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Notes Notes FOREWORD 

 

The Self-Learning Material (SLM) is written with the aim of providing simple 

and organized study content to all the learners. The SLMs are prepared on the 

framework of being mutually cohesive, internally consistent and structured as 

per the university’s syllabi. It is a humble attempt to give glimpses of the 

various approaches and dimensions to the topic of study and to kindle the 

learner’s interest to the subject 

 

We have tried to put together information from various sources into this book 

that has been written in an engaging style with interesting and relevant 

examples. It introduces you to the insights of subject concepts and theories and 

presents them in a way that is easy to understand and comprehend.  

 

We always believe in continuous improvement and would periodically update 

the content in the very interest of the learners. It may be added that despite 

enormous efforts and coordination, there is every possibility for some omission 

or inadequacy in few areas or topics, which would definitely be rectified in 

future. 

 

We hope you enjoy learning from this book and the experience truly enrich 

your learning and help you to advance in your career and future endeavours. 
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UNIT-8: THE P-ADIC NORM AND 

THE P-ADIC NUMBERS 

STRUCTURE 

8.0 Objectives 

8.1 Introduction  

8.2 Classical linear groups over p-adic fields 

8.3 Study of gln p 

8.4 Study of On p, P 

8.5 Locally Compact Fields 

8.6 Extension to the representations of K which do not satisfy condition  

8.7 Let Us Sum Up  

8.8 Keywords  

8.9 Questions For Review  

8.10 References  

8.11 Answers To Check Your Progress   

8.0 OBJECTIVES 

After studying this unit, you should be able to: 

 Understand about Classical linear groups over p-adic fields 

 Understand about Study of gln p 

 Understand about Study of On p, P 

  Understand about Locally Compact Fields 

 Understand about Extension to the representations of K which do 

not satisfy the condition S  

8.1 INTRODUCTION 
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In mathematics, p-adic analysis is a branch of number theory that deals 

with the mathematical analysis of the functions of p-adic numbers. 

Classical linear groups over p-adic fields, Study of gln p, Study of On 

p, P,  Locally Compact Fields, Extension to the representations of K 

which do not satisfy the condition S. 

8.2 CLASSICAL LINEAR GROUPS OVER 

P-ADIC FIELDS 

General Definitions 

We shall study the following types of classical linear groups over   field 

P or over division algebra. 

GL„ P- The group of all non-singular n x n matrices with coefficients 

from P is known the general linear group 

PrGLn P Let CLn P be the centre of the group GL^ P. The group pr 

GLn{ P=GLn P/CLn P is known the projective linear group. 

SLn P-The subgroup of GLn P consisting of all the matrices of 

determinant 1 is known the special linear group or the unimodular group.    

It can be proved that PrSLn P=S Ln P/ C S Ln P is a simple group 

Let= Pn and <p a non-degenerate bilinear form overS Pn P-  If <p 

is an alternating form, then the the set of all ma- trices in GLn P which 

leave this bilinear form invariant is a group known the linear symplectic 

group. We shall denote the by Spn P. This group is independent of the 

choice of the alternating  bilinear form because any two such bilinear 

forms are equivalent. 

If p is a symmetric non-degenerate bilinear form, then the set of elements 

in GLn P leaving p invariant is group known the linear orthogonal 

group. 

Let P be a separable quadratic extension of P. Let^be the unique 

nontrivial automorphism of P. If p is a non-degenerate Hermitian 

bilinear form overi .., y y, x= p x, y, then the set Un p, P of 
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elements of GLn P leaving p invariant is a group known the unitary 

group. 

Letp be a division algebra of finite rank over P, such that P is the centre 

of p. GLn P The group SLn P can be defined as the kernel   of the 

map ^ determinant of Dieudonne from GLn P to p/C where C is the 

commutator subgroup of P\ 

Let PP be the algebra of quaternions over P. In this case there exists an 

involution in p i .., an anti automorphism of p of order 2. So we can 

define as in the group Un p, P which leaves invariant the bilinear form 

p over pn. As in can define S0n p, P and SVn p, P and prove that their 

projective groups are in general simple. 

Suppose that P is a locally compact p-adic field. All the groups of types 

are locally compact, because on Mn P the set of all nyn matrices with 

coefficients from P we have the topology of P"1 and GLn P is an open 

subset of Mn P and the groups SLn P etc.are closed subgroups of GLn 

P. 

Let us assume that the rank of p over P is r. Then Mn p can be 

imbedded in Mnr P, as p can be considered as a space of dimension nr 

over P, since a matrix is inversible in Mn p if and only if it is invertible 

in Mnr P, we have 

GLn p=GLnr P H Mn p But GLnr P is an open subset of Mnr P, 

therefore GLn p is an open subset of Mn p. Since Mn p is locally 

compact, because it hasthe same topology as the P'1, GLn P is locally 

compact. Un <p, P is locally compact, because it is a closed subgroup 

of GLn p. 

8.3 STUDY OF GLN P  

By p we shall mean a division algebra of finite rank over P, which is a 

locally compact valuated field, contained in the centre of p. Let O denote 

the ring of integers of P 
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As we have already observen that O is a compact subset of p, there- fore 

Mn O which is homeomorphic to On2 is compact in Mn P. Let GLn 

O be the set of elements Mn O which are invertible in Mn O. 

Obviously GLn F contains GLn O. Therefore 

GLn O=GLn p n Mn O n [GLn p n Mn O]"1 

Since O is open in p, Mn O is open in Mn p. Therefore GLn O is 

open in Mn O. Similarly GLn O is open in GLn p. Moreover GLn 

O is closed in Mn O. For, let Xp be a sequence of elements in GLn 

O such that Xp tends to XMn O as p tends to infinity. Because Mn 

O is compact, we can assume that X-1 has a limit Z in Mn O. But 

then ZX=XZ=I, therefore Xbelongs to GLn O. Hence GLn O is 

compact. 

We define in the following some subgroups of GLn p, which will be of 

use later on. 

where * indicates that there can be some non-zero entries. 

*|tGLn p, ai 

n being a  

Uniform sing parameter in P1 

N = 1 1 anaijP, aij ^ 0a1n 

a iZ Pa" 

We observe immediately that T=AN and r=DN. Moreover T is a solvable 

group, r is solvable if Pis commutative and T respectively r is a semi 

direct product of A and N respectively D and N. 

Proposition. GLn P=G=TK, where K=GLn O. 

Proof. When n=1, the proposition is trivially true. Suppose that it is true 

for all GLs p for s<n - 1. We shall prove it for GLn p. Let g= gij be 

an element of G. We can find integers kj11<j<n such that 

n^ gijkj1=0 for 2<i<n j=1 = a110 for i=1. 
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By multiplying on the right with a suitable element of p we can take 

atleast one of j to be 1. Let k= y j be a matrix, where yi1 = ki1 for i=1, 2, 

.. ., n with j=1, Yjr=0 for r=2, .. ., n and the other jij are so determined 

that k belongs to K. 

So we get But by induction hypothesis g=tk where t belongs to T and 

kK' the subgroups T' and K' defined in GLn-1 P in the same way as T 

and K in G Thus we get 

1 *k-1\/1 0 t 0 k 

This implies that 

= t1k1, t1T and k1K. 

Hence our result follows: 

We shall now prove an analogue of Elementary divisors theorem. 

Let A be a ring with unity but without any other condition. Let us 

consider the following assertions where module signifies left module: 

any finitely generated module is isomorphic to a direct sum 

A/a„ where a, are left ideals with Aa\ d ... d ar  

i= l ~1 ~1 ~r 

Such decomposition, if it exists, is unique. 

if M is a free module of finite type and N a finitely generated submodule 

of M, there exists a basis e1, .. ., er and r elements a1, .. .,ar of A such 

that ai+1 c Aaj and such that N is the direct sum of submodules Aae. 

if such elements et and ai exist, the ideal Aaj are independent of the 

choice of the ei and ai satisfying. 

if g is a m X n matrix with coefficients in A, there exists two m X m and 

mxn invertible matrices p and q such that d=pgq is a m X n "diagonal" 

matrix i .., dj=for i ± j and ai=dilAai+1. 

if such matrices p and q exist, the ideals Aai are independent of the 

choice of p and q. 
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It is obvious that : consider a basis x \,..xn of M and a system of 

generators y1ym of N and define the matrix g by Yj=H gijXi. Then et 

=q~likXk is basis of Mand the ae =pikyk generate N. if a is left 

Noetherian then implies, for any finitely generated module is a quotient 

M/N, with M free of finite type and N finitely generated. 

It is well known that all these six assertions are true if A is a com- 

mutative principal ideal ring. We shall now prove the following 

extension: 

Theorem. Let A be a ring with unity but A can be non-commutative and 

can have zero divisors, which satisfies the following conditions: 

any left or tight ideal is two sided equivalently Ax =xA for any xA 

the set of the principal ideals is totally ordered by inclusion hence any 

finitely generated ideal is principal. 

Proof : the result is obviously true form n=m=1. Assume it is proved for 

m - 1 X n - 1 matrices. Let us consider the ideals A gij- : by they are 

all contained in one of them, and we can assume without loss of 

generality, that gjiAg11 for any indices i, j. Let gi1=cig11 for 2<i<m. 

By multiplying g on the left by a m X m matrix k where 

' i 0 0-c2 10 … 0 

k = -cm o …1 

we get a matrix kg with kg11=g11 and kgi1=0 for i>2. Moreover,  the 

matrix k is invertible. Similarly, using the fact that gijg11 A. We find 

a n X n inversible matrix h such that 

g11 0 ... 0 

Now, we have just to apply the induction hypothesis to g remember  that 

all the coefficients of g, hence of g belong to Agn. 

Proof. Let ^. respectively yf be the canonical generator of A/a,    

respectively A/bj and x,  respectively yj the canonical image of L 

respectively y. in M. Then y j=Y aijxi, where anA and is determined 
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j i=1 m 

completely modulo a, and therefore modulo a,. Similarly x, =Y I'ki.Yk- 

~ ~ k= 1 

where bkiiA and is completely determined modulo b1. Let m be a 

maximal left ideal containing b1. We observe immediately that m is a 

two nn 

sided ideal and Ajm is a division algebra. Since yy=Y ay=X I'ki.Yk- 

we have 

n ^ aij=Sky mod in 

But this is possible only when n>m, because if Vm and Vn are two 

vector spaces over a division ring of dimension m and n respectively 

such that <p and if are two linear transformations from Vm to Vn and Vn 

to Vm respectively. then ^=I implies that if is an isomorphism of Vm 

onto a subspace of Vn. In the same way we get that m>n. Hence m=n. 

If possible let us suppose that a, bj for some i. Let us suppose that  there 

exists an element a in at_ which does not belong to bj Consider the set 

aM, it is a submodule of M.  

Every left principal ideal in A is a right principal ideal in A. Let xeA —

>xaeAa be a map from A to Aa/aA n a,, its kernel is the set \x\xaa, 

}=B. Therefore we get that Aa/aA n a, is isomorphic to A/B. Moreover 

A/ B= 0 if and only if a belongs to a,. Now rank of aM=number of a, 

such that a does not belong to a,. Since a belongs to aj, a belongs to aj for 

j<i, therefore rank of a M<n - i. On the other hand rank of aM=number of 

bj, such that a does not belong to bj. Since a does not belong to bj, rank 

aM>n - i. Hence we arrive at a contradiction. Thus a, =bj and our result is 

proved. 

A has no zero divisors. 

Obviously, the ring O of the integers of any valuated non - commutative 

field satisfies.Moreover we have in this case djj= jdf1 with yO* and 

1<i<r and=0 for i>r. The diagonal n X n matrix y defined by yu=yi for 
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1<i<r and yi=1 for i>r is invertible   and multiplying d on the right by y-1 

and q on the left by y, we get a decomposition g=p d q where p and q are 

invertible and d is a diagonal matrix whose diagonal coefficients nPi are 

positive powers of the uniformising parameter n with JS1<…<fir, and 

the fij are com- pletely determined by these conditions we used the fact 

that ideal in O is generated by one and only one power of r. 

Now, let us return to the group G. For any n-tuple of rational inte- gers, 

a= a1, .. ., an, let da be the diagonal n X n matrix with diagonal 

coefficients na' and let A+ be the subset of the subgroup A consisting of 

the matrices da with a1<….<an. 

Proposition. In each double coset KgK modulo K, there exists one and 

only one element of A+. 

Proof. Let g= gij be any element of G. Multiply g by a diagonal matrix 

aii, where aii=ak, aP, v a>0 and k is a sufficiently large integer so 

chosen that the matrix g=g aiibelongs to K. Then by the above theorem 

there exist matrices p and q in K such that 

g aii=g=p'dpq with dpA+ 

Let us take ai=Si - kv a. Then we have g=pdaq with q, p in K and da in 

A+. Conversely if g belongs to Kda K. then g belongs to Kdp K. But dp 

is unique, therefore da is unique.  

Corollary. K is a maximal compact subgroup of G. 

If possible let H d K be a compact subgroup of G. Obviously there exists 

a ± 0 such that da belongs to H. Then 

r=air 0 

 dar=0 Pa 

If ai ± 0, then v nrai ^ ±m as r ^ ±ra, which is a contradiction as 84 v is a 

continuous function form p to R. Hence H=K. 

Letbe a vector space over p. Let I be a lattice ini .., a finitely 

generated O module such that its basis generate. Since I has no tor- 
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sion, basis of I is a basis of. In particular if we take= PPn and I=On 

and if we identify G with the group of endomorphisms of E,  then gK 

and only if g I=I. Moreover if we take any lattice L, then the subgroup 

of G which leaves L invariant is a conjugate subgroup of K. 

Let H be a compact subgroup of G. Let e1, .. ., en be a basis of.  Let J 

be an O-module generated by the elements h ej, 1<j<n and hH. 

Evidently we have 

J is invariant by H JI 

The map h ^ h ej is a continuous map from H to.  

But H is compact, therefore the image of H inby the map defined in is 

compact and hence bounded. Therefore there exists an integer k such that 

J c H~kI, which shows that J is finitely generated, but JI,  therefore J 

is generated by a finite set of element which generate.  Hence J is a 

lattice. Thus H is contained in a conjugate subgroup of K namely the 

subgroup of G which leaves J invariant. Hence we have proved the the 

following. 

Corollary. Any two maximal compact subgroups ofG are conjugates and 

any compact subgroup of G is contained in a maximal compact subgroup 

ofG. 

Remark. Any double coset KxK, xG, is a finite union of left cosets 

modulo K, because K is open and compact, therefore every double coset 

and left coset modulo K is open and compact. 

We introduce a total ordering in Zn by the lexicographic order i .., if 

a= a1, ..., an and jd= S1, ...,fdn are two elements of Zn, then we say 

that jd>a if jdi>a, for the least index i for which jdi ± ai. 

Proposition. If NdpK n KdaK p, where a  fd are in Zn and daA+ 

then jd>a and Nda K n Kda K=da K. 

Proof. Let ndp belongs to N dp Kn Kda K,  

Then ndp belongs to KdaK. But ndp belongs to KdaK if and only 
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CX\  Xn 

if the invariant factors of ndp are n, ... n. Therefore we get that /r"' 

divides tP i for i=1, 2, ..., n. If a 1<jSi, our assertion is proved. If a i=1, 

then we multiply the matrix ndp on the right by a matrix 8. 

wherenai 3in1if0 0So we getra1 00 tP2 *0 0 Jp n 

It is obvious that belongs to K. Therefore ndpd is in KdaK, which means 

that its invariant factors. Thus tGn are the invariant factors  for g, which 

implies that g belongs to Kn-1da - Kn-1 with obvious notations. Our 

assertion is trivially true forn=1. If we assume that it is true for all groups 

GLr P for r<n - 1. \\ c get a<[i. But a=ji, therefore a<g. We prove the 

second assertion also by induction on n. For n=1, it is trivially true. Let 

us assume that the results is true for all groups GLr P for r<n - 1. We 

have to show that dgnda belongs to K if nda belongs to KdaK Let us 

suppose that  

Since nda belongs to KdaKn"1 divides an for i=2, …,n. Obviously 

where X consists of integers Xj=n~ai a and g is a n - 1 X n - 1 mat rix 

of the form <F] X<1, and the invariant factors of n'da- are 

belongs to Kn-1 . 

8.4 STUDY OF ON P, P 

In this section we shall prove some of the results for the group G=On p, 

P.The same results can be proved for other such groups of GLn P 

namely SLn P etc. with obvious modifications. Throughout our 

discussion P will denote a locally compact p-adic field such that 

K=Op\Yp has characteristic different. 

Definition. Letbe a vector space of dimension n over P. A subspace F 

cis known isotropic with respect to p a bilinear form as) if there 

exists an element x in F such that p x, y=0 for every y in F, in other 

words the bilinear form when restricted to F is degenerate. 
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Definition. A subspace F cis known totally isotropic with respect to p 

if the restriction of p to F is zero i .., p x, y=0 for every x, y in F. 

It is obvious from the definition that the set of totally isotropic sub- 

spaces ofis inductively ordered. Therefore there exist maximal totally 

isotropic subspaces of. They are of the same dimension, which we call 

the index of p. If index of p=0, p is known a non-isotropic form. 

Witt's decomposition. Let E1, E2 and E3 be three subspaces of E such 

that 

E=E1  E2  E3 

E1 and E3 are totally isotropic. 

EiE3 is not isotropic. 

E2 is orthogonal to EiE3 i .., for x in E2, p x, y=o for every ye 

EiE3. 

It can be proved that for the vector space= Pn, there exists a Witt 

decomposition and we can find a basis e1, e2, ..., er of E1, er+1, ...,  er+q 

of E2 and er+q+1, ..., en of E3, where 2rq=n, in such a way   that <fi 

ej, ej=8, n+1-j for 1<i<r and rq<j<n. and that is an orthogonal basis 

for E2. Clearly the matrix of the 

rr+1, •• 

bilinear form p with respect to this basis ofis 

and A is a q X q matrix, which is the matrix of p restricted to E2. 

We shall now completely determine the restriction of p to the non - 

isotropic part. For simplicity we assume that r=0 and q=n. Let e1, ..., eq 

be an orthogonal basis of. If x= x1, ..., xq is a point q 

ofwith respect to these basis. Then p x, x= 2 a^ withP 

If  for ij is in P"y. then the vector o, ai 
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is an isotropic vector of p, which is not possible. Therefore ajaj  mod 

P*1, which implies that q<4. We shall say that two bilinear forms p and 

p' are equivalent if there exists a linear isomorphism of the space of p 

onto the space of p' and a constant c ± 0, such that p' o A=op. Then it can 

be proved that every non-isotropic bilinear form overis equivalent to 

one and only one of the following type: 

q=4 

xf - Cx2 - nx3Cnx4 

xf - Cx2 - Cnx3 

q=2 

x2 - Cx2 

xf - nx2 

xf - Cnxf 

The O-form as where l, C, n, C n is a set of representatives of 

P modulo Pj2 as obtained in Corollary of Hensel's Theorem. 

We shall say that a basis e, en is a Witt basis for p if the relations in are 

satisfied and if the restriction of p to E2 has one of the above forms. It is 

obvious that for p or for a constant multiple fo p, we can always find a 

Witt besides and the matrix of p with respect to a Witt basis is 

independent of the choice of the Witt basis. 

Proposition. If M=Mq P is a matrix such that M AM belongs to Mq O 

M denotes the transpose of the matrix M and A denotes the matrix of the 

restriction ofp to E2, then M belongs to Mq O. 

Proof. We prove first that if for xE, p x, x is in O, then the co- 

ordinates of x are in O. Let us assume for instance that q=4. If possible 

                                                      

1 q=3 

x1 - Cx2 - nx3 
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let v xf<0 and v xf<min v x2, v x3, v x4. Suppose that v xf=a. 

Since v x2 - cx2 - nx2 - cnx2>0 we have x2 - Cx2=o mod Y2r+1, 

where r=max 0, a. Therefore n-axf2 - s n-ax22=0  mod Y. 

But this is impossible, because C is not a square in k. Thus our result is 

established. The other cases can be similarly dealt with.  

Let M= mjj, then M AM= yj where yij-=p m1i, ..., mqimqj,  If MAM 

belongs to Mq O then yii belongs to O, which implies thatmri belongs 

to O for i, r=1, 2, ..., q. It is obvious that it is sufficient to assume that 

only the diagonal elements of M AM are in O. 

In the following we shall be dealing with a fixed Witt basis of the 

space. We shall adhere to the following notations throughout our 

discussion. 

Ko=G n K, To=G n T, N=G n N, Ao=G n A+ 

n 1 n-ar 0da =T«1 

where a= a1, ..., ar 

Proposition. G=T0K0 

Proof. We have already proved that GLn P=TK. Therefore gG 

implies that g=tk where t and K belong to T and K respectively. We 

know that det g=±1 and det k belongs to O*. So det t belongs to O*. 

But det t is a power of n, therefore det t=1. Now g belongs to G if and 

only if gOg=O i .., fOt=k-1'OK-1. Since k-1'Ok-1 belongs to Mn O, 

tOt belongs to Mn O. This shows that a^Sa3 and a3 and a2Aa2 belong 

to Mn O. Moreover, we have 1=det t= det a^ det a2 det a3 and det 

a2 and det a1. det a3 belong to O for, a15a3 belongs to Mn O. So 

det a2 belongs to O* implying a2 belongs to K. By above proposition we 

get that the matrix a2 has coefficients from O. We shall find a matrix 6 in 

T n K such that t6 belongs to G. Then g=tK=t66-1 K implies that 6-1 K 

belongs to Ko and our result will be proved. Multiply the matrix t by the 

matrices h and h on the right. Where We shall determine the matrices b, 

% and Z in such a way that belongs to G. Now th h'belongs to G if and 

only if 
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 t h h 'O t hh=O  

i .., if and only if the following conditions are satisfied 

b' sl1Sa3=S  

AYXa-1Sa3%'b' d1Sa3=0  

a'3 Sa1bZd3SZy AYZ' bb a\ Sa3Z sa3=0 let us take b=S a11 Sa3-

1. Then h belongs to K n T and the conditions reduce to 

AYX a-1'Sa3%'S=0 S Zd3 SZY AYZ' SZ Sa3=0 

So if we take SZ'=-AY- X'a^1Sa3 and sZ=V where V = 

a'3SZYAYZSa3, we observe that the matrix thh belongs to G. It is 

obvious that the matrix hh belongs to T n K.Hence we get  

g=thh. hh-1k=t0k0, which proves our result completely. 

Definition. Let I be a lattice in. The O module N I generated by the 

set of elements <p x, y for x, y in I is known the norm of the lattice I. 

A lattice I is known a maximal lattice if it is maximal among the lattices 

of norm N I. It is easy to observe that any lattice of a given norm is 

contained in a maximal lattice of the same norm. The lattice Io   

generated  by the Witt basis ei, ..., en ofis a maximal lattice of norm 

n 

On. Let I be a lattice of norm O containing Io. Let x =xiei be any 

element in I. Then ip x, ei=± xn+1-i for 1<i<r and rq<i<n. r+q 

let y= D xiei, since i y, ej is an integer for r1<j<rq, Xj is i=r+1 

an integer for r1<qr. Hence x belongs to Io. Therefore Io is a maximal 

lattice. 

Theorem. Let I1 and I2 be two maximal lattices of norm O, then there 

exists a Witt basis f1, f2, ..., fn ofand r integers aj>...>ar>0, such that 

r =index i 

I1 is generated by f1, f2, .. ., fn  
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I2 is generated by 

 

Proof. We shall prove the theorem by induction on r. When r=0, i is non-

isotropic and there exists only one maximal lattice of norm O which is 

generated by any witt basis of. Let us assume that the theorem is true 

for all bilinear forms of index<r. We first prove the following result. 

If I is a maximal lattice of norm O and X is an isotropic vector in I such 

that n-1 Xdoes not belong to I, then there exists an isotropic vector XI 

such that i X, X7=1. 

If possible let us suppose that the result is not true. Let us assume that i 

X, Y belongs to Y for every Y in I. Then i n-1 X, Y belongs to O. 

Consider I=IOn-1 X. It is a lattice because / is finitely generated O 

module containing I. Moreover 

l Yan-1 X, Zjin~xX=<p Y, Zai n-1 X, ZPi n~lX, Y is an 

integer for every a, /3 in O. Therefore norm of I' is O. But this is a 

contradiction because I is a maximal lattice of norm O. Therefore there 

exists a vector Y in I such that <p X, Y belongs to O*. By multiplying 

Y by some inversible element of O, we get a vector Y in I such that V 

X, Y'=1.  

Let us take X=Y - ^ F', YX. Obviously <p X, X=1 and <p X, X=O. 

Now we shall prove the theorem. For every isotropic vector XI1 

respectively I2 let t X respectively u X denote the smallest integer 

such that X respectively nuXX belongs to Irrespectively IO. Such an 

integer exists. because I1 is an O-module of finite type and I2 gen- erates 

E, therefore there exists an integer t such that ntI1 c I2. Thus t X<t 

always. Let X be an isotropic vector in I1 such that n-1 X does not 

belong to I1. Then Y=nt XX belongs to I2 and n-1 Y does not belong to 

I2. Since n-1 X does not belong to I1, it is obvious that u Y=-t X. By 

the above result there exists a vector X in I1 such that V X, X'=1 and 
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<p X, X'=0. This shows that n-1 X does not belong to I1. By the 

definition of t X and t X' we get that 

V nt X X, ^X,  X=^X+t X 

Since v nt XX, nt XX, nt XX belongs to U, we get that 

t Xt X>0.  

Similarly there exists an isotropic vector Y in I2 such that V Y, Y=1and 

u Yu Y>0. 

Let Z=n"^Y' Y, then t Z=-u Y 

Therefore we get 

t Xt Z<0   

obviously Z is isot ropic and n1Z does not belong to I1. Therefore there 

exists a vector Z in I1 such that v Z Z=1 and v Z, Z=0 and 

t ZHZ>0  

Let us suppose that the vector Xis so chosen that t X is of maximum 

value, which exists because t X<t for every X for some integer t. 

Therefore in particular we get t Z'<t X. From and it follows that 

t Xt Z=0 t Xt Z'=0 

Thus we have found two vectors X and Z in I1 such that na1 X and n-a1 

Z where a1=t X belong to I2 and 

p Z X=p n~t Z y,nt XY=1. 

Let F denote the subspace oforthogonal to the subspace of E generated 

by the vectors X and Z.Obviously p restricted to F is non - de- generate 

and its index is r - 1. Moreover I1=OX  OZ  F n I1,  because for any a in 

I1 we have 

a=AX+p Zb, where A and O belong to p and b belongs to F. But p a, 

X=u, therefore it is an integer, similarly A is an integer. Thus b belongs 
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to I1 and the assertion is proved. Similarly we have I2=Ona1 X On-a1 Z 

I2 n F. It can be easily sen that Ij n F j=1, 2 is a maximal lattice of norm 

O. Hence by induction hypothesis there exists a Witt basis f2, f3, •••, fn-1 

of F and there exist r-1 integers a2 >  — ar>o such that 

f1, f2, ..., fn-1 generate I1 n F. 

f2, .. ., lrfr, fr+1, ..., fr+q, °n fr+q+1' °n fn-1 generate h n F. 

If we take f1=Z, fn=X and a1=t X we get a Witt basis f1, •••, fn 97 

ofand r integers a1, ...,ar satisfying the requirements of the theorem 

because a2=t fn-1<a1. 

Corollary. The group G acts transitively on the set of lattices of norm O. 

The mapping g defined by 

g f=fi, where Y=ai for 1<i<r 

= O for r1<i<rq = 2rq - i1 for rq1<i<2rq. 

leaves O invariant. Therefore g belongs to G. 

Proposition. In each double coset of G modulo Ko there exists one and 

only one element da of A+. 

Proof. Let g be any element of G. We shall denote by g itself the au- 

tomorphism ofwith respect to the initial Witt basis e1, ..., en. The 

lattice g Io is obviously a maximal lattice of norm O. Therefore by the 

above theorem we get a Witt basis f1, ..., fnofsuch that 

Io is generated by f1, ..., fn,  

g Io is generated by g1, ..., gn where gi=f with as defined in the 

corollary of above theorem. Let k\ respectively k2 be the matrix with 

respect to the basis e1;.. ., en respectively g \, g2,  ... gn of the 

automorphism k1 respectively k2 defined by k1 ei=f  respectively k2 

gi=g^ for i=1, 2,  ,n. We observe immediately that the matrix K1 and 

K2 are in Ko. Moreover the matrix of the automorphism I] —> with 

respect to the basis I is d° It is obvious that 
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g ei=YuMJiSj 

j = *2S fakj fk 

jk = J] k2 d°akj kQB e7 jk, l 

Thus we get g=k2 cPa k \, which means da belongs to K^gK0. The 

uniqueness part of the propositional follows from the uniqueness of d° in 

K x K for x in GLn P. 

We introduce a total ordering in Zn which is inverse of the lexico- 

graphic ordering.  

Proposition. Let a and fi be two elements in Zr such thatA°+. If N° K0 

n K0 da K0p then fi>a. Moreover N° da K0 n K0 dO K0 = da K0. 

Proof. Since N0 d° K and K° da K are contained in N Gfi K and K da K 

respectively with 

a'= -a 1,  — a2, .. ., -ar, 0 ... 0, ar, ar-1, .. ., a\ fi'= — fi1,  — Pa, .. ., — 

fir, 0 ••• 0, fir, fir — 1,.. .,Ih 

we have N dp, K n K da, Kp. Therefore fi'>a' for the lexicographic  

ordering introduced in Zn. 

It is obvious that fi>a for the new ordering of Zr. The other assertion 

follows trivially from the fact that 

da K n G=da K°.  

Check your Progress-1 

Discuss classical linear groups over p-adic fields 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

8.5 LOCALLY COMPACT FIELDS 
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In this section we give certain equivalent conditions for valuated fields  

to be locally compact. Later on we shall completely characterise the 

locally compact valuated fields. 

Theorem. Let K be a field with a proper valuation v. Then the following 

conditions are equivalent. 

K is locally compact. O is compact. 

K is complete, v is a discrete valuation and k is a finite field. 

Proof,  a =^ b. Since I'aaerv form a fundamental system of closed 

neighbourhoods for 0, there exists an a such that I'a is compact. But m 

I'a=OXo, if Kx>=a, therefore O=x-1 Ia is compact. 

 b =^ a is trivial, as O is a compact neighbourhood of 0.  a =^ cK is 

complete because it is a locally compact commuta- tive group. For any 

a>0 in rv O/ Ia is compact because O is compact. 

But O/Ia is a discrete space, therefore it contains only a finite num- ber of 

elements. In particular k=O/Y is finite field. For any p in rv, 0<p<a, we 

have Ia c Ip c O, therefore Ip/Ia is a nontrivial ideal of O/Ia and distinct 

elements give rise to distinct ideals. But O/Ia is a 

finite set, therefore there exist only a finite number of p with 0<p<a,  so 

we get that 

rv has a smallest positive element 

rv is Archimedian. 

Thus rv is isomorphic to Z and the valuation v is discrete. c =^ b. We 

shall prove that discreteness of the valuation v and finiteness of k implies 

that O is precompact, which together with the fact that K is complete 

implies that O is compact. Let V be any neighbourhood of 0. Since v is 

discrete, for some n>0 V contains Yn. We shall show by induction on n 

that O/ Yn is finite for n>0. The result is true for n=1; let us assume it to 

be true for all r<n. We have O/Yn-1 ^ O/Yn/Yn-1/Yn But O/Yn-1 is 

finite by induction hypothesis and Yn-1/Yn is finite because it is 
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isomorphic to O/Y, therefore O/Yn is finite. Hence there exist a finite 

number of elements x1 xr in O 

such that O c |J (x^Yn c |J (x^V and since this is true for every 

i=1 i=1 

neighbourhood of 0, O is precompact.   

Convergent Power Series 

Let K be complete field with a real valuation v. Then the power series 

To f x=X anx" with coefficients from K is said to be convergent at a 

n=0 

to point x of K if the seriesanx" is convergent. It has already been 

to proved that the series anx" converges if and only if n=0 

v anx"=v annv x ^ to as n ^ to 

From it is obvious that if take t=lim inf - if a,,. then the series n n 

f converges for all x which v x>-t and does not converge for those x for 

which v x<-t and for those x for which v x=-t either the series 

converges for all x or does not converge at all. The number -t is known 

the order of convergence of the power series f and the set { x|v x>-t } 

or { x|v x>-t, if the series converges at a point x with v x=-t } is 

known the disc of convergence, which we shall denote by Df. If we 

consider the absolute value associated to v then the radius of 

convergence is  

p=a-= lim sup | a|n1/n } 

yn^TO and Df={ x| |x|<p } or { x| |x|<p } 

The mapping x ^ f x from Df to K is continuous because it is a uni- 

TO form limit of polynomials namely the partial sums of the 

seriesanxn 
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in the disc { x|v x>-t1, for all t1>t } or in the disc { x|v x>-t } if the 

series converges on the disc. The classical results about addition   and 

multiplication,. .. of power series can be carried over to the power series 

with coefficient in a complete valuated field. For instance 

if f x=X a^nxn and g x=2 bnxn are two power series with Df and 

Dg as their discs of convergence respectively; then if for one x in Df,  

ajx1 belongs to Dg for every i, f x also belongs to Dg and we have 

g f x=Z crxr, where cr=^ bq ^ ai1 ai2 ... aiq,  

q=0 i]_+i2+ — +iq=r 

all the series being convergent. 

Remark. If k=O/Y is an infinite field, then 

inf v aixi=inf v f /. v y=v x 

For, v f x>infi v aixi. We get equality, if there does not exist any 

two terms of the same valuation. In the exceptional case as the series 

TO as the seriesany" is convergent, we have 

f y=X aryterms of higher valuation, where io<r<Jo<to. 

r=io and without loss of generality we can assume that v x=0 and 

infjv aixi=0. Now v f y>0 if and only if 2 ary belongs to 

r=io Jo r Yi .., if and only if the polynomialarf the image in k=0. 

But 

r= io k has infinite number of elements and the above polynomial not 

being identically zero has only a finite number of zeros, therefore there 

exists atleast one y for which v f y=0 and v x=v y. Thus in this 

case whenever x is in Df and f y belongs to Dg for all those y for which 

v x=v y, we have 

inf v aixi=inf v f y. 
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v y=v x 

TO 

Then f g x=2 crxr with 

r=0 cr=^ bq ^ avi ... avq. r=0 V1+ +Vq=r 

Remark. Let A be a ring with a topology defined by a decreasing 

filtration Ann>0 of ideals for which A is Hausdorff and complete 

space. 

Then the formal power series anxn converges at x in A if and only n= 0 

if anxn ^ 0 as n tends to infinity and obviously the series converges 

everywhere in A if and only if an tends to 0 as n tends to infinity. 

8.6 EXTENSION TO 

REPRESENTATIONS OF K WHICH 

DO NOT SATISFY THE CONDITION 

S. 

This problem is related with the construction of other representa- tions of 

G: we have observen that the representation UA do not form a com- plete 

system. Hence, by the Gelfand-Raikov theorem, there certainly exist 

other irreducible unitary representations of G. 

We have two indications: first the case of a real semi-simple Lie group 

G. It observems very likely that to any class of Cartan subgroups H of G, 

corresponds a series of representations of G, indexed by the char- acters 

of H. This has been verified in some particular cases of.Harish- Chandra 

and Gelfand-Graev. In particular, assume that there exists a  compact 

Cartan subgroup H: then in many cases more precisely in the cases 

where G/K is a bounded homogeneous domain in the sense of.  Cartan 

K is a maximal compact subgroup, we can get irreducible uni- tary 

representations of G in the following way: take a character A of H. take 

the unitary induced representations UA in the space HA ; this rep- 

resentation is not irreducible. But we have a complex-analytic structure 

on G/H and we can look at the subspace of HA formed by the func- tions 
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which correspond to holomorphic functions on G/H. Then we get an 

irreducible representation. This is in particular true for compact semi-

simple Lie groups. 

On the other hand, in the case of classical linear groups over a finite 

field, for instance for the special linear group G with 2, 3 or 4 variables,  

one knows all the irreducible representations of G and one observes that 

to each class of Cartan subgroup H, corresponds a series of representa- 

tions indexed by the characters of H. But one does not know how exactly  

this correspondence works. It observems likely that the representation U 

A associated with character A of H is a sub representation of the 

induced representation UA, and it would be extremely interesting to get a 

"geometric" definition of U A. 

If one could get such a definition, it would perhaps be possible to 

generalize it to the algebraic simple linear groups or at least to the clas- 

sical groups over a p-adic field. 

Check your Progress-2 

Discuss locally compact fields 

__________________________________________________________

__________________________________________________________ 

8.7 LET US SUM UP 

In this unit we have discussed the definition and example of Classical 

linear groups over p-adic fields, Study of gln p ), Study of On p, P ), 

Locally Compact Fields, Extension to the representations of K which do 

not satisfy the condition S  

8.8 KEYWORDS 

Classical linear groups over p-adic fields….. We shall study the 

following types of classical linear groups over field P or over division 

algebra . 
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Study of gln p….. By p we shall mean a division algebra of finite rank 

over P, which is a locally compact valuated field, contained in the centre 

of p 

Study of On p, P….. In this section we shall prove some of the results 

for the group G=On p, P . 

Locally Compact Fields….. In this section we give certain equivalent 

conditions for valuated fields to be locally compact 

Extension to the representations of K which do not satisfy the condition 

S….. This problem is related with the construction of other representa- 

tions of G: we have observen that the representation UA do not form a 

com-plete system 

8.9 QUESTIONS FOR REVIEW 

Explain Classical linear groups over p-adic fields 

Explain Locally Compact Fields 

8.10 REFERENCE 

p-adic numbers: an introduction by Fernando Gouvea 

p-adic Numbers, p-adic Analysis, and Zeta-Functions, Neal Koblitz 

(1984, ISBN 978-0-387-96017-3) 

A Course in p-adic Analysis by Alain M Robert 

Analytic Elements in P-adic Analysis by Alain Escassut 

8.11 ANSWERS TO CHECK YOUR 

PROGRESS 

Classical linear groups over p-adic fields  

answer for Check your Progress-1 Q 

Locally Compact Fields     

answer for Check your Progress-2 Q  
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UNIT-9: ANALYTIC FUNCTIONS 

OVER P-ADIC FIELDS  

STRUCTURE 

9.0 Objectives 

9.1 Introduction  

9.2 Analytic Functions Over P-Adic Fields 

9.3 Zeroes Of A Power Series 

9.4 Criterion For The Rationality Of Power-Series 

9.5 P-Adic Power Series 

9.6 Algebraic Extensions Of Qp 

9.7 Study Of The Algebra Of Spherical Functions 

9.8 The Zero Set Of A Linear Recurrence Sequence 

9.9 Let Us Sum Up  

9.10 Keywords  

9.11 Questions For Review  

9.12 References 

9.13 Answers To Check Your Progress 

9.0 OBJECTIVES 

After studying this unit, you should be able to: 

 Understand about Analytic Functions Over P-Adic Fields 

 Understand about Zeroes Of A Power Series 

 Understand about Criterion For The Rationality Of Power-Series 

 Understand about P-Adic Power Series 

 Understand about Algebraic Extensions Of Qp 

  Understand about Study Of The Algebra Of Spherical Functions 

 Understand about The Zero Set Of A Linear Recurrence 

Sequence 
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9.1 INTRODUCTION 

In mathematics, p-adic analysis is a branch of number theory that deals 

with the mathematical analysis of the functions of p-adic numbers. 

Analytic Functions Over P-Adic Fields, Zeroes Of A Power Series, 

Criterion For The Rationality Of Power-Series, P-Adic Power Series, 

Algebraic Extensions Of Qp, Study Of The Algebra Of Spherical 

Functions, The Zero Set Of A Linear Recurrence Sequence. 

9.2 ANALYTIC FUNCTIONS OVER P-

ADIC FIELDS 

Unless otherwise stated K will denote a completed valuated field with  a 

real valuation v. We shall adhere to the notations adopted in part  

throughout our discussion. 

Newton Polygon of a Power-Series 

Definition. Let f x=2 aixi be a power-series over K. Let S be the i=0 

set of points Ai= i,  v ai in the Cartesian plane. The convex hull of S 

together with the point y=to on the ordinate axis is known the Newton 

Polygon of the power series f.  

It is obvious that the point Ai= i,  v ai lies on the line Yv xX = v 

aixi,  where v aix' is the intercept cut off by the line on the Y - axis.  

If the series is convergent at the point x=t then intercepts cut off on the 

axis of Y by the lines through the points Ai with the slope -v t tend to 

infinity as i tends to infinity. Moreover it can be easily proved that if mi 

is the sequence of slopes of the sides of Newton Polygon of f,  

then mi is monotonic increasing and 1111 ….. p f the order of 

convergence of f.  

9.3 ZEROES OF A POWER SERIES 

Let /'=X be a power series over K. Let p f =7_1, ''"inf— —. We 

have already proved that f is convergent for all points x in K for which 



                                                                                            Notes 

33 

Notes Notes 
v x>pf. Let r be a real number greater than p f. We shall try to 

find the zeroes of f on the circle v x=r. Let us assume that a0 ± 0.  

If there exists no side of the Newton Polygon of f with slope-r,  then 

there exists there exists one and only term of minimum valuation in X 

aixi. For,  if v x=r and a=v aixi=v ajxJ =^f v akxk,  then all the 

points Ak are above the line YrX=a and AiAJ- is a side of the Newton 

Polygon of slope-r. This is contrary to the hypothesis. Thus v f x=v 

aixi for some i and for v x=r,  which implies that there is no zero of f 

on the circle v x=r.  

If there exists a side Ap Aq of slope-r,  then there exist at least two terms 

of minimum valuation. Therefore there can to be a zero of f on the circle 

v x=r. Assume that p<q. Let v x0=r for some x0 in K and c=v 

aqx0=v aqxq. Consider the power series 

fi y=a-1 x-qf xoy=Y^ by 

Obviously v bp=v bq=0,  v bi>0 for i ± p,  q and v y=0 whenever v 

x=r. Hence without loss of generality we can take r = 0,  v ap=v 

aq=0,  v ai>0 for i<o and i<p and i>q and aq=1.  Therefore 

f x=xq...apxp=p...ap where ap0 

The polynomials X and X~p + + ap satisfy the requirements of 

Hensel's Theorem,  therefore there exists a monic polynomial g of degree 

q - p and a power series h,  both with coefficients in O,  such that 

~g=X~p...ap, h=xp,  f=gh 

and the radius of convergence of h is equal to the radius of convergence 

of f. Let us assume that g=X~p … gQ. Then go=~ep, 0. Let us 

further assume that K is an algebraically closed field. Then g has q – p 

zeroes in K which belong obviously to O*. Moreover h has no zeroes on 

the circle v x=0. Thus f has exactly q - p zeroes on the circle v x=0 

where q - p is the length o the projection of the side of the Newton 

Polygon of f with slope 0. If A1, A2,. . ., Aq-p are the zeroes of 
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q-p f,  on v x=0 then f=h • n x- Ai. We have also proved that if f is a 

i=1 f xpower series and A is its zero on a circle if x=r> p f,  then is 

x- A 

also a power series with the same radius of convergence. Regarding the 

zeroes of f inside the circle v x>r we prove the following.  

Proposition. The power series f has a finite number of zeroes A1,. . .,  Ak 

in the disc v x>r>p f and there exists a power series h such that 

f x =i P| x - Aj • h x with p f=p h.  

1=1 

Proof. We have proved that f x has zeroes on the circle v x=ri > p f 

if and only if there exists a side of the Newton Polygon of f of slope -ri. 

But we know that if m^ is the sequence of slopes of sides of the Newton 

Polygon of f,  then l™comi=-p f. Therefore there exist only a finite 

number of sides of the Newton Polygon of slope -r1<-r<-p f i.. , 

there exists only a finite number of r1 such that r1>r>p f for which 

there are zeroes of f x on v x=r1. Hence the theorem follows.   

If f x=X aid is convergent in a disc v x>r,  then we shall say  

i=0 that f x is analytic v x>r.  

Proposition. If f x has no zeroes in the disc v x>r>p f in particular f 

00,  then the power series /s analytic for v x>r.  

Proof. Let us assume that f 0=1. Since f has no zeroes in v x>r,  there 

exists no side of the Newton Polygon of f of slope<-r. This 

implies that>~r for every i. Considering f as a formal power 

J]V ai1>-Ti fU=-rJ  

1=1= A 1=1v bJ >-r.  

Hence p^j> r.  
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Proposition. If f is an entire function i.. , p f=-m and has no zeroes,  

then f is a constant.  

Let f x=Yj °j=0 aixi. As in the proof of the preceding proposition,  we 

observe that: 

v aj>-rJ for any r Hence,  we have aj=0 for J> 1.  

From these propositions,  we can deduce the complete structure of entire 

functions: 

Weierstrass' Theorem. Let K be an algebraically closed complete field 

with a real valuation v. Let f be an everywhere convergent power series 

over K. Then the zeroes of f different from zero form a se- quence A1,  

A2,. . ., An,. . .,  such that v An is a decreasing sequence which tends 

to -m if the sequence An is infinite and we have 

f x=a0/[~[|l - j 

the infinite product being uniformly convergent in each bounded subset 

of K. Conversely for any sequence An such that v An is a decreasing 

sequence tending to -m as n tends to infinity,  the infinite product  is 

uniformly convergent in every bounded subset of K and defines an entire 

having zeros at the prescribed points An.  

Proof. We shall prove the latter part first. Consider 

1=1 / v N x 1 

<pn x=n t1 _ j. =2 

N ^ '' k=0 

where akN= - lk V,. ' — —  

1<i1 <i2<---<ik<NAi1 Ai2  Aik 

clearly Kawv >\ v\ — •••v\— T /(11=p*. Since lim i{ Ai = \ W

 \A 1 // 1 — m 

-oo,  lim=co. Let 
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k — — m k 

co / \ m 

- [ [(l -11Xak^'where 

«= s 1 

i  Ai,  ... Ai, lt Okn 

1<i1 <12 <-<ik 1 k n — m 

 obviously the series giving at is convergent and therefore the series p 

xrepresents an entire function. We have to show that the polynomials 

pn converge to p uniformly on every bounded subset of K.  

Given two real numbers M and A there exists an integer q such that v 

akNXk>M for k>q,  for all x with v x>Aand for all N, because 

^ —>oo as k — » oo. This implies that for any N k 

PN x - ^ akNxk 

> M for v x>A   

P x - ^ akNxk 

Similarly we get 

> M for v x>A   

Since akN ^ aK as N tends to infinity,  combining we get v{ fi x - fiN 

k>Mfor N sufficiently large. It can be easily proved that the Aj are the 

only zeroes of the function <p x.    

Let us denote by f1 the product given by 1. Take a disc v x>r.  In this 

disc f x has only a finite number of zeroes. Let the zeroes of f in v x>r 

be 0 k times and A1, A2,. .. Ap. Then 

where gx has no zeroes in the disc if x>r. Therefore - is analytic in 

the disc v x>r. Consider — = — =n /=1 ' ~ j~ where g\ is f 

analytic and has no zeroes in the disc if x>r. Therefore — is analytic f 
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in the disc gx>r and has no zeroes in it. Since it is true for every r,  —  

is a constant function. Hence our theorem is proved.  

Form the properties of the meromorphic functions: 

Definition. A power series <p =aiX over a field K is said to be a 

j=-m 

meromorphic function in a disc v x>r if and only if there exist two 

functions f and g analytic in the same disc such that p= —.  

In any disc v x>F>r,  g has a finite number of zeroes,  therefore g=Pg 

where P is a polynomial and g has no zeroes v x>F which means that y 

is analytic in if x>F. Therefore we can can write  

p = f 1 

 —, where /'=f — is a convergent power series in if x>F. P g 

9.4 CRITERION FOR THE RATIONALITY 

OF POWER-SERIES 

Let F be any field and f=Y*TO=0 akX an element in F[[x]]. It can be 

easily proved that f is a rational function if and only if there exists a 

finite sequences qio<i<h of elements of F at least one of which is non- 

zero and an integer k such that 

anPhan+1 Qh-1' ' 'an+hQo=0 

for all integers n such that nh>k. Let us denote by Ah+1 the determi- 

nant of the matrix an+i+j0<i, j<h.  

Theorem The power series f is a rational function if and only if there 

exists integer h and no such that Ah+1=0 for all v>no.  

Proof. It is obvious that the condition is necessary. We shall prove that 

the condition is sufficient by induction on h. When h=0,  we have an=0 

for n sufficiently large. Therefore f is actually a polynomial.  Let us 
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assume that An+1=0 for n>no. Moreover we can assume that Ah ± 0 for 

infinitely many n,  because if An=0 for n large then by induction 

hypothesis we get that f is a rational function. Since Ah+1=0  

for n>no,  Ah Ahn+2= Ah+1. So it follows that Ah0 for n>no.  

Consider the following system of linear equations 

Er=an0+r*1an0+l+r*2•••an0+l+rXh+1=0 for r=0,  1,  2, . ..  

For any q>no the system 2 qof the h if h equations Eq,  Eq+1,. .. Eq+h-1 

is of rank h because Ahq ± 0. So has a unique solution upto a constant 

factor. But the system <=' of the h1 equations Eq,. . ., Eq+h is also of 

rank h because Ah+10 and A^+1=0 and therefore 2'q and 2 q+1 on the 

hand and 2 'qand 2 q1 on the other hand have the same solution.  

Thus any solution of q is a solution of q+1 and any solution of no is a 

solution of Eq for q>no. Thus we have found a finite sequence xi such 

that ano+rx1...ano+h+rxh+1=0 for r>0. Hence f is a rational function. 

  

Theorem. Let f x=Y> aiX be a formal power series with coefficients in 

Z. Let R and r be two real numbers such that Rr>1 

f considered as a power series over the field of complex numbers is  

holomorphic in the disc |x|<R.  

f considered as a power series over Op the complete algebraic clo- sure 

of Qp is meromorphic in the disc |x|<F with F>r.  where lip is the 

absolute value associated to Vp. Then f is a rational function.  

Proof. We can assume that R<1,  because R>1 implies that f is a 

polynomial and we have nothing to prove. Moreover r>1,  because Rr>1. 

Since f is meromorphic in |x|p<P,  there exist two functions g and h 

analytic in \x\p<r such that /=f. If necessary by multiplying / by a suitable 

power of x we can assume that f has no pole at x=0 and hence that h is 

polynomial with h 0=1. Let 

By Cauchy's inequality we obtain the following 

|as|<MR-s 
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|gs|<Nr~s 

By taking R and r smaller if necessary we assume that |as |<R~s and 

|gs|p<r~s for s>s0.  

Let m+1 

where m>k.  

The equation gives an+m an+m+1 an+m+k-2 gn+m-k r2+2m 

Obviously for n>so we have 

IA^+1I< m1! R- n+2mm+1 and lAm+1lp< r~nm~k+1 

because |an|p<1 for every n. If Am+10,  then 1<|Am+1||Am+1|< 

m1!R_2m m+1rkn[Rr]"n m+1=k1[ R rm+1 r~k]-n 

Let m be so chosen that Rrm+1r~k>1. Then there exists an integer n0 

such that for n>n0 

Am+1iAm+1i<1.  

This is a contradiction. Therefore Am+1=0 for n>n0. Hence f is a 

rational function.   

Corollary. If f is a power series over Z such that f has a non-zero radius 

of convergence considered as series over the complex number field is 

meromorphic in Op,  then f is a rational function.  

9.5 P-ADIC POWER SERIES 

We consider power series 

f x=^2 ak x— xok 

where x0Qp and akQp for all k.  

f x converges on B x0, p-m lim \ak\pp-mk=0.  

k^k 
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In particular,  f x=^k=0 akxk converges on Zp=B 0, 1 if and only if 

limk^k \ak\p=0. Consider the set of power series converging on Zp,  

O :=<akxk : akZp for k ^ 0,  lim \ak\p=0 1.  

Then O is a ring under addition and multiplication of power series. 

Notice that O contains Zp[x].  

Given power series f=^k=0 akxk,  g=k=0 bkxkO and a non-negative 

integer m,  we write f=g modpm if ak=bk modpm for all k ^ 0.  

Theorem.  Strassman. Let f x=T=0 akxk t O be a power series of 

which not all coefficients are 0. Let k0 be the index such that 

|ak|p ^ |ako|p for k ^ ko,  |ak|p<|ako|p for k>ko.  

Then f x has at most k0 zeros in O.  

By dividing f by ako,  we observe that there is no loss of generality to 

assume that ako=1,  ak t Zp for k ^ k0,  ak t pZp for k>k0.  

We need some Theorems.  

Theorem. Let R be a ring and g a monic polynomial in R[x]. Then for 

every polynomial f t R[x] there exist q, r t R[x] such that 

f=qgr,  r=0 or deg r<deg g.  

Proof. This is the usual division with remainder algorithm for 

polynomials.  Since g is monic,  it holds for polynomials with 

coefficients in an arbitrary   ring R.  

Theorem. Suppose that f satisfies. Then there are a monic polynomial g t 

Zp[x] of degree k0,  and h tO,  such that 

f=g • h,  h=1 modp.  

Proof. We prove by induction on m that for m ^ 0 there are polynomials 

gm,  hm such that 

f=gmhm modpm+1,  gm is monic,  deggm=k0,  hm=1 modp,  

gm=gm-1 modpm,  hm=hm-i modpm,  
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where g-i=h-i := 0. Suppose we have constructed such polynomials. Let 

0 ^ k ^ k0. Then the coefficients of Xk in g0,  g1,. . ., form a Cauchy 

sequence,  and thus,  they converge to a limit in Zp. As a consequence,  

the polynomials gm converge to a monic polynomial g t Zp[x] of degree 

k0. Likewise,  for every k ^ 0,  the coefficients of Xk in hm form a 

Cauchy sequence and thus converge to a limit in Zp. We note that the 

degrees of the polynomials hm can increase to x>. As a consequence,  

the polynomials hm converge to a power series h t O. We have h=1 

modp since hm=1 modp for all m. The coefficients of f— gmhm 

converge to the coefficients of f— gh and on the other hand to 0. Hence 

f=g • h.  

We now come to the construction of the polynomials gm,  hm. Note that  

holds for m=0 with g0 := ^k=0 akxk,  ho=1. Assume that holds for some 

m ^ 0. We have to construct gm+1,  hm+1 such that holds for m1 

instead of m.  

We truncate f after an index k1 such that |ak\p ^ p-m-2 for k>k1,  that is,  

we take f1 := Y^k=0 akxk. Then f=f1 modpm+2,  and thus,  f1 = gmhm 

modpm+1. This implies that there is a polynomial aZp[x] such that 

f1=gmhmpm+1a.  

By there are polynomials q, rZp[X] such that 

a=qgmr,  with r=0 or deg r<deg gm.  

Now take 

gm+1 := gmpm+1r,  hm+1 := hmpm+1q.  

Then we have the following congruences modulo pm+2: 

f— gm+1hm+1=f1— gmpm+1r hmp^^ 

= gm hmpm+1a— gmhm— pm+1 qgmrhm— p2m+2qr = pm+1 

a— qgm— rhm 

= pm+1 a— qgm— r— r hm— 1 

= 0 modpm+2.  
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Hence gm+1,  hm+1 satisfy with m +1 instead of m. This completes our 

induction step.  

Proof of Theorem. Take g,  h as in for xZp we have h x=1 modp,   

hence h x=0. Therefore,  the zeros of f in Zp are those of g. So f has at 

most deg g=k0 zeros in Zp.   

Check your Progress-1 

Discuss Analytic Functions Over P-Adic Fields   

9.6 ALGEBRAIC EXTENSIONS OF QP 

The completion R of Q with respect to the ordinary absolute value has 

only one non-trivial algebraic extension,  namely C. Further,  the 

ordinary absolute value\•\on R has precisely one extension to C,  given 

by |a| := \a • o|1/2=\Nc/r o\1/2 for aC.  

In contrast,  Qp has finite extensions of arbitrarily large degrees: for 

instance,  for every positive integer d,  Xd— p is irreducible in Qp[X] 

and thus,  Qp has an algebraic extension of degree d. An interesting fact 

is,  that for every positive integer d,  Qp has up to isomorphism only 

finitely many extensions of degree d. We state without proofs some 

results on the extension of |.|p to finite extensions of Qp.  

Let K be a finite extension of Qp of degree d,  say. Completely similarly 

as for algebraic number fields,  there is aK such that K=Qp a. Let f 

X=Xda1Xd-1...adQp[X] be the minimal polynomial of a over 

Qp. Let a1,. .. , ad be the distinct zeros of f in the algebraic closure Qp of 

Qp. These give rise to precisely d distinct Qp-embeddings i.. , 

injective homomorphisms leaving elements of Qp unchanged of K in 

Qp,  say a1,. .. , ad with &i a=ai for i=1,. . ., d.  

We define the norm of K over Qp by d 

Nk/qp a=Gj a for aK.  

We state without proof the following result.  
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Theorem. Let K be a finite extension of Qp. Then |.|p can be continued in 

precisely one way to K,  and K is complete with respect to this 

continuation If we denote this continuation also by |.|p,  then we have 

| a|p=|Nk/qp a|p/[K:Qp] for aK.  

One can show that if Qp a=K and f X=Xd+a1Xd 1...adQp[X] is 

the minimal polynomial of a over Qp,  then 

NK/qp a= — 1dad.  

More generally,  if Qp a=K,  then the degree d of f divides [K : Qp],  

and we have 

|a|p=|ad|p/d.  

Given a finite extension K of Qp,  we define the ring of p-adic integers of 

K,  

Op, K := { aK : |a|p ^ 1 }.  

Then 

mp, K := { aK : \a\p<1 } 

is a maximal ideal of Op, K and 

Op, K/mp, K 

is a field,  the residue class field of K.  

Let d := [K : Qp]. Then the value group \K*\p := { \a\p : aK* } is a 

subgroup of the multiplicative cyclic group generated by p-1/d. So \K*\p 

is generated by p-1/eK for some positive divisor eK of d. We call eK the 

ramification index of K.  

One can show that Op, K/mp, K is a finite extension of Zp/pZp=Fp. The 

degree fK := [Op, K/mp, K : Zp/pZp] is known the residue class degree 

of K. We state without proof the following results. Given aOp, K,  we 

write a for the corresponding residue class in Op, K/mp, K.  

Theorem. Let K be a finite extension of Qp with ramification index= 

eK and residue class degree f=fK. elements of Op, K such that u1,. .. , Uf 
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form a basis of Op, K/mp, K over Fp = Zp/pZp. Then Op, K is a free Zp-

module with basis 

{ n%Uj : i=0,. .. ,  — 1,  j=1,. . ., f },  

i.. , every element of Op, K can be expressed uniquely in the form 

e-1 f i=0 j=1 

Examples.. Let K=Q3 /3={ ab/3 : a, bQ3 },  where is one of the 

roots of X2— 3. Notice that \/3Q3. For \^3\2=3-1,  hence \V3\3 does 

not belong to the value set of\ \3 on Q3. In general,  we have for a, 

bQ3,  

\ab/3\3=\nq3 ^3/q3 ab/3\1/2=\a2— 3b2\3/2 = max \a\3,  3-

1/2\b\3.  

This implies 

O3, K={ a6^3 : a, b G Z3 },  m3, K={ abV3 : a G 3Z3,  b G Z3 

}=V3O3, k,  

03, k/m3, K— Z3/3Z3=F3.  

This confirms that eK=2,  fK=1.  

Let K=Q3 i={ abi : a,  b G Q3 },  where i is a root of X21. The 

polynomial X21 does not have roots modulo 3,  so it is irreducible in 

Q3 [X].  We have for a, b G Q3,  

|abiI3=|a2b2^2=max | a|3,  |b|a,  

hence 

O3, K={ abi : a, b G Z3 },  m3, K={ abi : a, b G 3Z3 }=3O3, K,  

Or3, K/m3, K={ abi : a, b G F3 }=F3 i.  

This confirms that eK=1,  fK=2.  

We can extend |.|p to the algebraic closure Qp: given a G Qp,  take any 

finite extension K of Qp containing a and put 
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|a|p := 1 NK/Qp a|p/[K:Qp].  

gives an alternative expression which is independent of the choice of K.  

Qp is not complete with respect to |.|p.     The completion Cp of Qp with 

respect to |.|p is algebraically closed. 

9.7 STUDY OF THE ALGEBRA OF 

SPHERICAL FUNCTIONS 

Let M be the unity representation of K and Let A be the algebra  Lm G: 

by our results, this is a commutative algebra. It observems possible to 

determine completely the structure of A. The representations UA likely 

give all the characters A of A. The A describe a space isomorphic to a 

space Cr and the map a ^ A a is probably an isomorphism of A onto 

the algebra of polynomials on Cr which are invariant by the Weyl group 

of G.  It observems that a recent work by Satake unpublished gives a 

positive answer.  

Computation of the "characters" of the UA.  

The representations UA are "in general" irreducible. Moreover, if f is a 

continuous function on G,  with carrier contained in K, and if f belongs 

to some Lm K,  then it is trivial to show that the operator Uxf if of 

finite rank,  and hence has a trace. The same is obviously true if f is a 

finite linear combination of translates of such functions. But the space of 

those f is exactly what known the space of "regular" functions of G  

space D G and the map f ^ Tr Uf is a "distribution" on G.  A problem 

is to compute more or less explicitly this distribution which is the 

"character" of UA. It observems likely that,  at least on the open subset 

of the "regular" elements g of G it is a simple function of the proper 

values of g by analogy with the case of complex or real semi-simple Lie 

groups,  of works of Harsih-Chandra and Gelfand-Naimark.  

9.8 THE ZERO SET OF A LINEAR 

RECURRENCE SEQUENCE 
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The Norwegian mathematician Thoralf Skolem introduced techniques 

from p-adic analysis to prove results on Diophantine equations. As an 

example we prove a result on linear recurrence sequences.  

A linear recurrence sequence in C is a sequence U={ uk }<=L0 given by 

a linear recurrence 

un— clun-1' ' 'ckun-k n ^ k with coefficients c1,. .. , ck G C and 

ck=0,  and by initial values 

uo,. . ., uk-i G C.  

The linear recurrence relation satisfied by U is not uniquely determined. 

It is however not difficult to show that there is only one linear recurrence 

relation of minimal length satisfied by U. This minimal length is known 

the order of U.  

Let be the linear recurrence of minimal length satisfied by U. Then the 

polynomial 

fu X := Xk - ciXk-1 cfc 

is known the companion polynomial of f.  

Remark. Denote by Iu the set of polynomials a0Xma1 Xm-1...am G 

C[X] such that 

aoUnaiun-i...amun-m=0 for all n ^ m.  

Then Iu is an ideal of the polynomial ring C[X] generated by fu,  i.. , 

all polynomials in Iu are divisible by fu,   

Theorem. Let f=Xk— c1Xk-1— ...— ck G C[X] with ck=0. Suppose that 

f factorizes over C as f= X— «1ei X— at 

where a1,. . ., at are distinct,  and e1,. . ., et are positive integers. let U={ 

un }~0   be a sequence in C. Then the following two assertions are 

equivalent: U satisfies un=c1un-1c2un-2...ckun-k n ^ k.  

There are polynomials f1,. . ., ft G C[X] of degrees at most e1— 1,. . ., 

et— 1,  respectively such that 
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un=^ fh na'n for n ^ 0.  

Moreover,  the polynomials f1,. . ., ft are uniquely determined by U.  

Proof. Take a sequence U with Define the k x k-matrix 

(0 1 0 \0 1 0 

A 1\ ck ck-1   c1 / 

For n ^ 0 let un := un,. . ., un+k-1T. Then un+1=Aun for n ^ 0 and thus,  

un=Anu0 for n ^ 0.  

Check that the characteristic polynomial of A is det X1— A=f X. 

There is a non-singular matrix C such that A=C-1JC,  where J is a Jordan 

Normal Form of A. We can take 

Ji \J = ... V Jt j 

where for h=1,. .. , t,  Jh is the Jordan block of order eh associated with 

ah,  /ah 1 \ / 1 a-1  

This implies that An=C-1 JnC= Ej n^ ,  where V / i, j=1,. . ., k 

Eij n=J] fhij nan withC[X ],  deg<eh— 1.  

By substituting this into and taking the first coordinate,  with some   

polynomials f1,. . ., ft of degrees at most e1— 1,. . ., et— 1,  respectively.  

The unicity of fi,. . ., ft. Let V be the set of sequences U satisfying Then 

V is a complex vector space.  Its dimension is k,  since any k-tuple of 

initial values u0,. . ., uk-1C can be extended uniquely to a sequence U 

satisfying Next,  let W be the set of sequences U satisfying for certain 

polynomials fi,. . ., ft of degrees at most e1— 1,. .. , et— 1,  respectively. 

Also W is a complex vector space,  generated by the sequences { 

nj0^^=0,  for h=1,. .. , t,  j=0,. .. , eh— 1.  Note that the number of these 

generators is e1...et=k; so W has dimension ^ k. We have just shown 

that V C W. Hence W must have dimension equal to k=dim V and so,  

V=W. This implies the equivalence Further,  { nja'n }jj=0,  h=1,. . ., t,  

j=0,. . ., eh— 1 must form a basis of W=V. Hence any sequence in V 

can be expressed uniquely in the form.  
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Corollary. Let again f=Xk— ciXk-1 cfc= X— aie1 ••• X— 

atetC[X],  

where ck=0,  a1,. . ., at are distinct,  and e1>0,. . ., et>0,  and let U={ un 

}n=0  be a sequence in C. Then the following two assertions are 

equivalent: 

U is a linear recurrence sequence with companion polynomial f.  

There are polynomials f1,. . ., ftC[X ] of degrees exactly e1— 1,. .. , 

et— 1,   respectively such that 

t 

Un=^ fh na'n for n ^ 0.  

Proof. First assume that U has companion polynomial f. Then k := deg f 

is the length of the minimal recurrence satisfied by U.  We know that 

Un=h=1 fh nan with deg f =: e'h— 1 ^ eh— 1 for h=1,. . ., t.  

Then again,  U satisfies a linear recurrence of length ej...et 

corresponding to the polynomial     X— a1e'1 ... X— atet. So e1... et 

^ k.  Hence e'h=eh for h=1,. . ., t.  

Conversely,  let U={ u, n } with u, n=Yfh=1 fh narn where deg 

fh=eh— 1 for h=1,. . ., t. By Theorem 7. 1,  U satisfies the companion 

polynomial of U divides f,  so it is of the shape X— a1e'1 ... X — atet 

with eh ^ eh.  

eh— 1,  for h=1,. .. , t. Hence e'h=eh for h=1,. . ., t,  and the companion 

polynomial of U is f.   

We are interested in the zero set of a linear recurrence sequence,  

Zj := { nZ>0 :, un=^ fh n<=0 }.  

Equations of the shape Y^h=1 fh n n=0 are known exponential – 

polynomial equations.  

Example. Let U be given by 

 /,. n+1  .. — n — 1 \ 
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Un := 2 2n — 2n n— 1   —  . =e2ni/3.  

2  \.  —. 1 J 

By Corollary U has companion polynomial 

 X— 2 X2 X —. 2 X —. — 12=X62X5— X4— 6X3— 

11X2— 8X— 4,  

so it is a linear recurrence sequence of order 6.  

By considering n=0 mod 6,  n=1 mod 6,. .. one verifies that 

Zjj={ 0, 1 } U { n: n=5 mod6 } 

 check this. This example was specifically constructed to make it easy 

to com- pute the set Zj. In case that k := deg fJ ^ 3 and the a and the 

coefficients of the fi are algebraic numbers there exists an algorithm to 

determine the set ZJ which is based on lower bounds for linear forms in 

logarithms. But for k>3 such an algorithm is not known.  

Theorem.  Skolem,  Mahler,  Lech. The set Zjj is either finite,  or a 

union of a finite set and a finite number of infinite arithmetic sequences.  

Under an additional hypothesis,  it can be shown that there are no infinite 

arithmetic sequences in ZJ,  and thus,  that the set of solutions is finite.  

Corollary. Let t ^ 2. Suppose that the polynomials fi in are nonzero,  and 

that none of the quotients ai/aj 1 ^ i<j ^ t is a root of unity.  Then the set 

Zjj is finite.  

Proof. Suppose that Zv contains an infinite arithmetic sequence,  say { 

a+dm : mZ^0 }. That is,  

Vm := ^ 9h mPm=0 for all mZ^o,  

Where gh X=fh adXah,  ^h=ah 

If any two numbers pi, Pj were equal,  we would have ai/ajd=1,  

contradicting our assumption. Hence ^1,. .. , fit are distinct. Theorem 

implies that the polynomials g1,. .. , gt are identically 0,  hence the 
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polynomials f1,. . ., ft are identically 0,  which is again against our 

assumption.   

To apply techniques from p-adic analysis. For this,  we have to map U to 

a sequence in Qp.  

Denote by { v1,. . ., vm } the set of coefficients of the polynomials f1,. . 

., ft and let K=Q v1, . . ., Vm, a1,. .. , at 

be the field generated by the vi and the ah,  i.. , consisting of all 

expressions f/g where f, g are polynomials in the vi and ah with 

coefficients from Q.  Clearly,  unK for all n ^ 0. Note that a priori the 

vi and ah are just complex numbers,  with the ah=0. So these numbers 

can be algebraic or transcendental.  

First suppose that v1,. . ., vm,  a1,. .. , at are algebraic,  i.. , K is an 

algebraic number field. Similarly as one can embed K in C,  one can 

embed K in any algebraically closed field that contains Q. So in 

particular,  one can embed K in Qp for any prime number p. Thus,  we 

can map the sequence U to a sequence in Qp with the same set of zeros,  

and apply techniques from p-adic analysis on Qp.  

The Chebotarev density theorem from algebraic number theory implies 

that there are infinitely many primes p such that K can be embedded in 

Qp. Thus,  by choosing the prime p appropriately,  we can work also on 

Qp itself instead of an algebraic extension.  

Now assume that not all v1,. . ., vm,  a1,. .. , at are algebraic. Lech 

showed that also in this general case,  there are infinitely many primes p,  

such that the field K can be embedded in Qp. We leave aside the intricate 

proof of this fact.  

Thus,  in all cases,  the sequence U can be mapped to a sequence of 

which the coefficients of the polynomials fh and the numbers ah all lie in 

Qp. In fact,  by a careful choice of the prime p we can observe to it that 

fhZp[X],  ahZ for h =1,. . ., t.  

This is what we assume henceforth.  
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The idea of the proof is then to define a power series 

u x := ^ fh xah 

and to apply Theorem 5. 1,  to get a hand on the zeros in Zp. The 

problem is that for this,  we have to define ah as a power series and this 

is not always possible.  

In analogy to the well-known expansion over R or C,  we define 

 1ftx=^ for @, xZp with \ft\p ^ 1/p,  

k=o ^ ' 

where f x^ x x— 1 ... x— k1VkJ=k!.  

Notice that for x=n a non-negative integer,  this coincides with the usual 

definition for 1ftn.  

We show that the series converges. Choose a sequence of positive 

integers xn— x. Then x"— iff since also in the p-adic setting,  

polynomials are continuous. The numbers X* are all integers,  so 

kZp. This implies that I Xftk\p<\ftk\p— 0 as k— — <x>. Hence 

indeed,  the series converges.  

We want to express 1ftx as a power series in x. Put r := 1 if p>2,  r := 

2 if p =2.  

Theorem. Suppose that \ft\p ^ p-r. Then there is a power series expansion 

<X> 1ft x=^ ck xk which converges for xZp.  

Proof. Assume that we have shown that \0k/k!\p ^ 0 as k ^ <x>. Let 

xZp.  Then 

i+a x=^ ~k\ x x -1 ••• x - k +1 

ro a k k 

=akj-xj with akj-Z 

k=0 j=0 



Notes 

52 

^ f^ ak ^ j = 2. J Lhl akj Jxj.  

j=0 \k=j ' / 

Interchanging the summations is allowed by Theorem and the 

expressions between the parentheses converge. This yields our power 

series expression.  

It remains to show that \, 5k/k'\p ^ 0 as k ^ x>. We first estimate \k'\p.  

Among { 1,. . ., k } there are precisely [k/p] multiples of p which 

together con- tribute [k/p] factors p to the prime factorization of k!. 

Further,  among these integers there are precisely [k/p2] multiples of p2 

which contribute another [k/p2] factors p; and so on. Thus,  the maximal 

power of p dividing k! is 

[k/p][k/p2][k/p3]... <  -,  

and so,  \ak/k!\p ^ pk/ p-1-kr ^ 0 as k ^ <x>. This completes our proof.  

We are now ready to complete. Put again r=1 if p>2 and r=2 if p=2. 

Further,  set D=p— 1 if p>2 and D=2 if p =2. Then the unit group 

Zp/prZp* has order D. This implies that = 1 modpr,  i.. , =1ah 

with \ah\p ^ p-r. We now split up Zj into residue classes modulo D,  i.. 

, we consider the sets 

Za := { mZ^0 : ua+Dm=0 } for a=0,. .. , D— 1.  

Now indeed,  

Ua x := ^ fi aDxah+Dx=^ f aDxa<= 1^hx 

is a power series converging on Zp with ua m=ua+Dm for mZ^0. By 

Theorem,  ua x is either identically 0,  or it has only finitely many zeros 

on Zp. This implies that either Za=Z^0,  or is finite. As a consequence,  

the solution set is indeed the union of a finite set and finitely many 

infinite arithmetic sequences.  

An important problem is to estimate the cardinality of the finite set and 

of the number of arithmetic sequences that occur in the set of solutions 

of.  The following result is due to W. M. Schmidt. Let U be a linear 

recurrence sequence in C of order k. Let A U denote the cardinality of 
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the finite set in Zjj,  and B U the number of arithmetic sequences in Zj. 

Then 

A UB U ^ exp exp exp 20k.  

The importance of this bound is that it depends only on k and not on any 

other parameter. It is very likely far from best possible. Schmidt's very 

difficult proof does not use p-adic analysis like above,  but is based on 

Diophantine approximation.  

We give an application to cubic Thue equations. Let f X=X3aX2 + 

bXc be an irreducible polynomial in Z[X] with one real root,  say a1 

and two complex roots a2,  a3=a2. Consider the equation 

F x,  y=x3ax2ybxy2cy3=1 in x, y G Z.  

Let K=Q aq. Then K is a cubic field with one real embedding and two 

complex embeddings. Then the unit group O*K has rank 1. That is,  

there is pi such that O*K={ ±nl : n G Z }. Let x, y be a solution of The 

conjugates of x— a1y are x— aiy for i=1,  2,  3. Hence 3 

Nk/q x— aq y=JJ x— o^y=F x, y=1.  

So x — a1y is a unit,  i.. , x — a1y=±nn for some n G Z. Then also x 

— aiy=±n™ for i=1,  2,  3. We use the identity 

 02— a3 x— a1y 03— a1 x— a2 y 01— «2 x— 03 y=0.  

This implies 

 a2— a3hl' a3— a1 n2 a1— a2h3=°.  

We leave as Exercise to prove that none of the quotients yi/yj i=j is a 

root of unity. Then by Corollary this last equation has only finitely many 

solutions n G Z^q. We prove in the same manner that there are only 

finitely many solutions n<0 by applying again,  but now with n-1 instead 

of n and taking n' := — n>0. As a consequence,  the equation F x, y=1 

has only finitely many solutions.   
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Check your Progress-2 

Discuss Algebraic Extensions Of Qp 

__________________________________________________________

__________________________________________________________

__________________________________________________________  

9.9 LET US SUM UP 

In this unit we have discussed the definition and example of Analytic 

Functions Over P-Adic Fields, Zeroes Of A Power Series, Criterion For 

The Rationality Of Power – Series, P-Adic Power Series, Algebraic 

Extensions Of Qp, Study Of The Algebra Of Spherical Functions, The 

Zero Set Of A Linear Recurrence Sequence 

9.10 KEYWORDS 

Analytic Functions Over P-Adic Fields….. stated K will denote a 

completed valuated field with a real valuation v 

Zeroes Of A Power Series ….. Let /'=X be a power series over K. Let p 

f =7_1, ''"inf— —  

Criterion For The Rationality Of Power – Series….. Let F be any field 

and f=Y*TO=0 akX an element in F[[x]]. 

P-Adic Power Series…… The completion R of Q with respect to the 

ordinary absolute value has only one non-trivial algebraic extension,  

namely C . 

Algebraic Extensions Of Qp ….. Study Of The Algebra Of Spherical 

Functions….. Let M be the unity representation of K and Let A be the 

algebra  Lm G: by our results, this is a commutative algebra. It 

observems possible 

The Zero Set Of A Linear Recurrence Sequence….. The Norwegian 

mathematician Thoralf Skolem introduced techniques from p-adic 

analysis to prove results on Diophantine equations 
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9.11 QUESTIONS FOR REVIEW 

Explain Analytic Functions Over P-Adic Fields 

Explain Algebraic Extensions Of Qp 

9.12 REFERENCES 

p-adic numbers: an introduction by Fernando Gouvea 

p-adic Numbers, p-adic Analysis, and Zeta-Functions, Neal Koblitz 

(1984, ISBN 978-0-387-96017-3) 

A Course in p-adic Analysis by Alain M Robert 

Analytic Elements in P-adic Analysis by Alain Escassut 

9.13 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Analytic Functions Over P-Adic Fields   

answer for Check your Progress-1 Q 

Algebraic Extensions Of Qp  

answer for Check your Progress-2 Q  
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UNIT-10 : ZETA-FUNCTIONS  

STRUCTURE 

10.0 Objectives 

10.1 Introduction  

10.2 Zeta-functions 

10.3 Fields of finite type over z 

10.4 Convergence of the product 

10.5 Zeta function of a prescheme 

10.6 Zeta function of a prescheme over fp 

10.7 Zeta function of a prescheme over fq 

10.8 Reduction to a hyper-surface 

10.9 Algebraic And Topological Properties 

10.10 Let Us Sum Up  

10.11 Keywords  

10.12 Questions For Review  

10.13 References 

10.14 Answers To Check Your Progress 

10.0 OBJECTIVE 

After studying this unit, you should be able to: 

 

 Understand about Zeta-functions 

 Understand about Fields of finite type over z 

 Understand about Convergence of the product 

 Understand about Zeta function of a prescheme 

 Understand about Zeta function of a prescheme over fp  

 Understand about Zeta function of a prescheme over fq 
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 Understand about Reduction to a hyper-surface 

 Understand about Algebraic And Topological Properties  

 

10.1 INTRODUCTION 

In mathematics, p-adic analysis is a branch of number theory that deals 

with the mathematical analysis of the functions of p-adic numbers. 

Zeta-functions, Fields of finite type over z, Convergence of the product, 

Zeta function of a prescheme, Zeta function of a prescheme over fp, Zeta 

function of a prescheme over fq, Reduction to a hyper-surface, Algebraic 

And Topological Properties 

 

10.2 ZETA-FUNCTIONS 

It is well known that the Riemann zeta function Z s=n 1 - P-s-1,   

P where p runs over all prime numbers,  is absolutely convergent for Res 

>. We can generalise this definition for any commutative ring with unit 

element. In the case of ring of integers p is nothing but the generating 

element of the maximal ideal p and it is also equal to the number of 

elements in the field Z/ p. Motivated by this we define for any 

commutative ring A with identity 

Za s=f[ 1 - N M-s-1 /klcf57h]’ ―P l M 

where M runs over the set of all maximal ideals of A and N M is the 

number of elements in the field A/M. But in general N M is not finite 

and even if N M is finite the produce I is not convergent,  therefore 

we have to put some more restrictions on the ring. In the following we 

shall prove that if A is finitely generated over Z i.. ,  if there exist a 

finite number of elements x1, ,  xk in A such that the homomorphism 

from 
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z[xi, . . .,  Xk to A which sends X' to Xj is surjective,  then N M is finite 

and the infinite product I is absolutely convergent fot Re s>dim A,   

where the dimension of A is defined as follows.  

 

Definition. If A is an integral domain,  the dimension of A is the tran- 

scendence degree respectively transcendence degree +1 of the quotient 

field of A over Z/ p respectively Q if characteristic of A is p  

respectively 0. In the general case dim A is the supremum of the 

dimension of the rings A/Y where Y is any minimal prime ideal.  

It can be proved that dimension of A is equal to the supremum of the 

lengths of strict maximal chains of prime ideals. Before proving the 

convergence of the zeta function we give some examples of finitely 

generated rings of over Z.  

The ring Z is finitely generated over itself.  

Any finite field Fq.  

The ring of polynomials in a finite number of variables over Fq i, . ,  

the ring Fq[X1Xk] 

The ring Fq[X1, . . .,  Xr]/U,  where U is any prime ideal of Fq[X1,   .. .,  

Xr]. This is the set of regular functions defined over Fq on the variety V 

defined by the ideal U affine space.  

Let K be any algebraic number field. The ring of integers A in K is 

finitely generated over Z.  

Let V be an affine variety defined over the algebraic number field K and 

let O c K[X1, . . .,  Xr] be the ideal of V. Then the ring of regular 

functions on V i.. ,  K[X1, . . .,  Xr]/O is not finitely gen- erated over 

Z.  

But the ideal O is generated by the ideal O0 = O n A[X1, . . .,  Xr] of the 

ring A[X1, . . .,  Xr] and we can associate to Vthe quotient ring A[X1;.. .,  

Xr]/O which is obviously finitely generated over Z. It is to be noted that 
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this ring is not intrinsic and depends on the choice of the coordinates in 

Kr  

10.3 FIELDS OF FINITE TYPE OVER Z 

We shall require the following Theorem in the course of our discussion.  

Normalisation Theorem of Noether. Let K be a field. Let R and S be 

subrings of K containing a unit elements such that S is finitely generated 

over R. Then there exists an elements a0 in R and a finite number pf 

element X1, . . .,  Xr in S such that 

X1, . . .,  Xr are algebraically independent over the quotient fields of R.  

Any elements of S is integer over R[a-1,  X1, . . .,  Xr].  

Proposition. Let K be a field. Let R be a subring of K and L the quotient 

field of R. If K as a ring is finitely generated over R,  then  K : L is 

finite and there exists an element a in R such that L=R[a-1 ].  

We first prove the following: If a field K is integral over a subring R then 

R is a field.  

Let x be any element of R,  then x-1 belongs to K and therefore satisfies 

an equation 

Xna1 X"-1•••an=0,  aiR 

This implies that x-1 is a polynomial in x over R. But R[x]=R,   therefore 

x-1 belongs to R. Hence R. Hence Ris afield Proof of proposition 1. 

Since K is finitely generated over R,  by the normalization Theorem,  

there exists an element a0 in R and a finite family x1, . . .,  xr in K 

algebraically independent over L such that K is integral over R[a-1,  x1;.. 

.,  xr]. By the remark above it follows that R[a-1,  x1, . .. ,  xr] is a field. 

But x1, . .. ,  xr are algebraically independent over L,  therefore r=0 and 

L=R[a-1]. Since K is finitely generated and integral over L, K : L is 

finite.  

Proposition. If a commutative ring A is finitely generated overZ,  then 

WN M is finite for any maximal ideal M of A.  
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Proof. Since A is finitely generated over Z,  the field K=A/M is finitely  

generated over Z. If characteristic of K is zero then K contains Z. There- 

fore by proposition 1 Q=Z a-1 for some a ± 0 and a in Z,  which is 

impossible. Thus characteristic of K is p and by proposition K is a finite 

extension of Fp,  hence K is a finite field.   

 

10.4 CONVERGENCE OF THE PRODUCT 

Proposition. The infinite product Za s is a absolutely convergent for Re 

s>dim A and uniformly convergent for Re s>dim As for every s> 0.  

Proof. We shall prove the result by induction on r=dim A. If r=0 

Lai 1 Za s =1 - q~s 

is a meromorphic function in the plane with a simple pole at s=0.  Let us 

assume that the result is true for all those rings which are finitely 

generated over Z and dimension of which are less than r. Before proving 

the result for rings of dimension r we prove the following result.   

Let A be a finitely generated ring over Z and B=A[X],  the ring of 

polynomials in one variable over A,  then Zb s=Za s - 1 in a suitable 

domain of convergence. In fact if Za s is convergent for Re s>x,  then 

Zb s is convergent for Re s>x1.  

If dim A=0,  then A=Fq for some q and B=Fq[X]. Since he maximal 

ideals in B are generated by irreducible polynomials,  which can be 

assumed to be monic,  we get 

Zb s=f[ 1 - qsd p-1 

where P runs over the set of monic irreducible polynomials over A. In 

order to prove the absolute convergence of Zb s,  it is sufficient to 

prove the convergence of the infinite series 

where s=tit 

Since the number of monic polynomials of degree r is qr,  we have 
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TO* =|q-d P|T <<= qr|q-r|T^ q 1 - &r r=1 

Obviously the series S is convergent if 1 - <r<0 i.. ,  <r>1. More- over 

in this domain 

Zb s =  Q a monic polynomial inB 

Q q h- y — =y — Z — i nsk Z — i nKs~ 

qsk k=0qk s-1 1 - q1-s 

Hence 

ZB s=<=a s - 1.  

Now let the dimension of A be arbitrary and B=A[X \.  

We shall denote by Spm B the set of maximal ideals of B. For any M in 

Spm B,  M n A is in Spm A,  because A/M n A,  being a subring of 

the finite field B/M,  is a field. Let n denote the mapping MSpm B 

—>M n ASpm A. It can be easily proved that the set n-1N and Spm 

A/N[X are isomorphic,  where N is any maximal ideal of A. Therefore 

Zb S=n [1 - N M-s\-1 

meSpm B= n 11 1 - N m-s-1 

neSpm A men-1 n= 0 ZA/M[X] s 

neSpm A 

But A/N is a finite field,  therefore Za/N[X\s=Za/N s - 1 

So we get 

ZB s=Y\ ZA/n s - 1 

neSpm A= Y\ 1 - N N1-s-1 

neSpm A= Za s - 1.  

It follows that ZFq s[Xu.. ., xk\=| and Zz[Xu.. ., xK]=Zz k- s 

where Zz is nothing but the Riemann zeta function.  
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Now we shall prove our main proposition. Assume that A is an integral 

domain.  

Let K be the quotient field and R the prime ring of A.  

Since A is finitely generated over R,  by the normalisation Theorem we 

have the following: 

If characteristic A=p ± 0,  then there exist r elements x1; x2, . . .,  xr in A 

such that A is integral over R[x1, . . .,  xr],  where x1, . . .,  xr are 

algebraically independent over R=Fp.  ii- If characteristic A=0,   then 

there exits an element a in R=Z and r - 1 elements x1;.. .,  xr-1 in A such 

that every element of A is integral over Z[a-1,  x1, . .. xr-1] and the 

elements x1, . . .,  xr-1 are algebraically independent over Q.  

We get r elements in the first case and r - 1 elements in the second case 

because r is the dimension of A which is equal to the transcendence 

degree of K over Fp or transcendence degree of K over Q1 according as 

the characteristic of A is non-zero or not. It can be proved that A re- 

spectively A'=A a-1 is a finite module over B=Fp[x1;.. .,  xr] re- 

spectively B=Z[a-1,  x1, . . .,  xr-1] and the mapping n from Spm A ^ 

Spm B respectively from Spm A' ^ Spm B is onto. Let A 

respectively A' be generated by k elements as a B respectively B 

module. We shall prove that n-1 N for any N in Spm B respectively 

in Spm B has at most k elements. Let C=A/AN. It is an algebra of rank 

t<k over B/N. Since n-1 M is isomorphic to Spm A/AN it is sufficient 

to prove that C has at most k maximal ideals. This will follow from the 

following.  

Theorem Let A be any commutative ring with identity and Ui1<Km a 

finite set of prime ideals in A such that 

A=UiUj for ij 

Then the mapping Q : A ^ P = n AUi is surjective 

Proof. It is sufficient to prove that 1=Y ai where aj belongs to Uj for  

ji because if t1, . .. ,  tm is any element of P,  then | m \ 
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 I=t'ian= t1, . . .,  tm,  where ft is a representative of ti in A.  

If m=2,  the result is obvious i.. ,  1=a1a2 where a1 is in O2 and a2 is 

in O1. Let us assume that it is true for less than m ideals.  

m-1 Then 1=Y Vi where ViOj for 1<j<m - 1 and ji. Since 

A=OiOm,  we have 1=xiyi for 1<i<m - 1 with xiOm and 

m- 1  

e Oi. Clearly Y xvY viYi=1.  

Let us take Uj=vx for i<i<m - 1 and um=Y yvi,  then 

ui=1 and uiOj for j ± i.   

Let M1,  M2, . . .,  Mt be any finite set of distinct maximal ideals of C.  

tt 

Then by Theorem C/- P| M is isomorphic to  C/M/ indicates the direct 

sum. Thus t<k.  

Assume that the characteristic of A is 0. Let M be any maximal ideals of 

A. If a does not belong to M,  then MA[a-1] is a maximal ideal in A[a-1],  

because A[a-1]/MA[a-1] is isomorphic to A/M. If a belongs to M,  then 

M contains one and only one prime Pi occurring in the unique 

factorisation of a and the set of maximal ideals which contains pi. is 

isomorphic to Spm A/piA. Therefore if a=p^1, . . .,  patt,  then 

Za s=ZA[a-1] s n Z s 

i=1 A/PiAyg[5 

But dim A/p^A<dim A,  therefore inorder to prove the convergence k[.  

of Za s it is sufficient to consider ZA[a-1] s. We have 

ZA[a-1] s=n n 1 - ^M-5-1 

n Spm S' ne-1n n 

Since N M>N M,  we get 
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^ ^ |NMr<k Y,  N«r<kUr - <r - 1 

neSpm <= nen-1 M neSpm 5' 

Therefore ZA[a-i] s is convergent for %s>dim A.  

If characteristic A=p,  then we get 

^ ^ |NMr<k Yj |NNr<kZFp r - s 

neSpm <= men-1 n neSpm 5' 

which gives the same result as above Now we have in the general case  

A is not an integral domain.  

10.5 ZETA FUNCTION OF A PRESCHEME 

Let A be a commutative ring with unity. We shall denote by Sp A the 

set of all prime ideals of A. On Sp A we define a topology by 

classifying the sets F O as closed sets,  where 

F O={ Y|Y d O,  YSp A }.  

and O is any ideal in A. This topology is referred to as the Jacobson 

Zariski topology. It is obvious that in this topology a point is closed if 

and only if it is a maximal ideal of A. We associate with every point Y of 

Sp A a local ring A namely the ring of quotient of A with respect to the 

multiplicatively closed set A - Y. On O the sum of all these local rings 

we define a sheaf structure by giving "sufficiently many" sections.  For 

any a,  b,  e,  A we consider the open subset 

V b={ Y|YSp A,  Y t b }.  

For any Y\{ h, -] the,  fraction is an element of Y. Then V b! y b the 

mapping Y — » -  gives a section S a,  b of 0. The pair X,  ffbY 

together with the sheaf of local rings O is known an affine scheme,  

where X=Sp A.  

Definition. Let X,  O be a ringed space. We say that Xis a prescheme if 

every point has an open neighbourhood which is isomorphic as a ringed 
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space to Sp A for some ring A. Such a neighbourhood is known an 

affine neighbourhood.  

We shall assume that the pre-scheme X satisfies the ascending chain 

condition for open sets,  then X is quasi-compact and it can be written as 

the union of a finite number of affine open sets X- We shall denote by Aj 

the ring such that X is isomorphic to SpA. Then the ring Aj is 

Noetherian and has a finite number of minimal prime ideals Yjj. Each 

prime ideal of Aj contains a Yjj and X=SpA is the union of the 

sjj=SpAj with Ajj=Aj/Yjj,  each Sj being a closed subset of X and the 

Aj being integral domains. Moreover the residue field of the local ring 

associated to a point xSj is the same for the sheaf of the scheme X and 

for the sheaf of the scheme Sp Aj 

We define the dimension of X as the maximum of the dimensions of the 

rings A/or of the rings Aj. It can be proved that if X is irreducible  i..  

if X cannot be represented as union of two proper closed subsets.  then 

Aj=dim Aj for iJ.  

A prescheme S is a finite type over Z if there exists a decomposition of S 

into a union of a finite number of open affine sets X such that each  Aj,  

the ring associated to X,  is finitely generated over Z. It can be proved 

that the same is true for any decomposition into a finite number of affine 

open sets. In particular,  a ring A is finitely generated over Z if and only 

if the scheme Sp A is of finite tyte over Z and an open prescheme of S 

is also of finite type over Z.  

Let S be a prescheme of finite type over Z. A point xS is closed if and 

only if the residue field of the local ring of x is finite we shall denote by 

N x the number of elements of this field. In particular,  if S=UX.,  

then a point xXj is closed in S if and only if it is closed in X Now we 

define the Z-function of S by: 

Zs s=f[ 1 - N x-s-1 

where x runs over the set of closed points of S. It is clear that if S=Sp 

A,  then Zs=Za- As above,  we can write S as a union of a finite 

number of subsets Sj,  each Sj being affine open subset,  with  
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Sj=SpA,  where Aj is an integral domain finitely generated over Z.  

Then it is obvious that: 

| n <=s] |<n CsinSjnS* j ... 

Cs=u !\i<j<k ^ /  n Z SinS I<j 

Now we shall prove the following generalization.  

The Z function of a prescheme S of finite type over Z is convergent for 

Re s>dim S.  

Of course bis for prescheme of dimension<dim S. Then we get as in the 

preceding the convergence of Za for any integral domain A finitely 

generated over Z of dimension<dim S,  and in particular the convergence 

of the Zst. After I,  we have just to prove this: if U  resp. F is an open 

resp. closed subset of X=Sp A with dim A < dim S,  then ZUnF is 

convergent for Re s>dim S. But let G=X- U; we have: 

ZunF=ZF/ZFnG 

and F n G is closed in X. Hence we have just to prove the convergence of 

Zf. But F is defined by an ideal of A and F=Sp A/O and Zf = Za/o. If 

O={ 0 },  we have Zf=Za and if O{ 0 } then the minimal prime ideals of 

A/ O give non trivial prime ideals of A and we have dim A/O<dim S : 

the induction hypothesis ensures the convergence of ZF.  

Check your Progress-1 

Discuss Zeta – functions 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

10.6 ZETA FUNCTION OF A PRESCHEME 

OVER FP 

Let S be a prescheme over Z of finite type. We have a canonical map 

from a prescheme S to Sp Z given by n x=characteristics of the 

residue field of local ring of x for any x in S. Suppose that n x=p for 
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every x in S. In this case each Aj is of characteristic p and the canonical 

map from Z into Aj can be factored through Fp. In this case we say that 

the prescheme S is over Fp.  

Let S be a prescheme of finite type over Fp. Then the residue field k x 

of the local ring associated to a closed point x is of characteristic P for 

every x in S. Therefore k x=Fpdx where d x is a strictly positive 

integer. thus 

& s= n i-p~sd xyi~x=xeS 

Let us take t=p~s. Then 

cs s= n i ~^~i=cs t.  

x=xeS 

The function Zs t is also known a zeta function on S. It is absolutely  

convergent in the disc |t|<p~dim s. we have 

x=xeS k= 0 h=0 

with a0=1 and anZ. The end of these lectures will be devoted to the 

following theorem Dwork's theorem: 

Theorem. The function lis t of a prescheme S of finite type over Fp is a 

rational function of t. 

10.7 ZETA FUNCTION OF A PRESCHEME 

OVER FQ 

In order to prove Dwork's theorem it is sufficient to prove it for an affine 

scheme and open sets of an affine scheme because of the equation.  

Then we have to look at thezeta function of a ring A finitely generated 

over Fp. Such a ring can be considered as the quotient of Fp[X1 Xk ] by 

some ideal O and we can associate to A the variety V defined by O in Kk 

where K is the algebraic closure of Fp. It can be noted that V is not 

necessary irreducible. We shall call Za the zeta function of the variety V.  
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More generally we consider a variety V over Fq,  where q=pf. The 

variety V is completely determined by the ring 

A=Fq[X1, . .. Xn\/O n Fq[X1, . . .,  Xn] where O is an ideal in K[X1,   .. 

Xn\ generated by O0=Fq[X1, . . .,  Xn\ n O K being the algebraic closure 

of Fq. We define 

Zv=Za and Zv=Za.  

For every maximal ideal M of Fq[X1;... Xn\ there exists a maxi- mal 

ideal M in K[X1, . . .,  Xn\ such that Fq[X1, . . .,  Xn\ n M'=M. But 

Spm K[X1,   Xn\ is isomorphic to Kn,  therefore a maximal ideal M of 

Fq[X1;.. .,  Xn\ is determined by one point x of Kn. Moreover this point 

x belongs to V if and only if M d O However this correspondence be- 

tween the maximal ideals of Fq[X\ and the points of Kn is not one-one.  

So we want to find the condition when two points x and y of Kn cor- 

respond to the same maximal ideal of Fq[X1;.. .,  Xn\=Fq[X |. Let Mx 

and My be the maximal ideals of K[X| corresponding to x= x1, . . .,  xn 

and y= y1, . . .,  yn respectively such that Mx n Fq[ x\=My n Fq [x \. It 

is obvious that Fq[X\ /Mx n Fq[x\=F[x\/My n Fq[x\ is isomorphic to Fq 

[x1;.. .,  xn\=Fqf for some f>0. We shall show that the necessary and 

sufficient condition that Mx n Fq[X|=My n Fq[X| is that there exists   an 

element u in G Fqf/Fq such that u x=y. For n=1 the existence of u is 

trivial.  

Let us assume that there exists a u in G Fqf/Fq such that u xi=yi for 

i=1,  2, . . .,  r - 1 for<n. Let u xj=zj for j>r. Let P x be the polynomial 

of zr over Fq y1, . . .,  yr-1. Then P y1, . . .,  yr-1zr=0,   which gives 

on applying u the equation P x1, . . .,  xr-1,  yr=0. Therefore P is in My 

n Fq[X\ i.. ,  P y1, . .. yr-1,  yr=0. Thus yr and zr are conjugate over 

Fq y1, . . .,  yr-1. Let t be the automorphism of K over Fq y1, . . ., yr-1 

such that T ar=yr. Then tou is an element of G Fqf /Fq such that tou 

xj=yi for i=1,  2, . . .,  r. Our result follows by induction. The converse 

is trivial. Hence we observe that if M is a maximal ideal of Fq[X| 

containing O with N M=qf,  then there exist exactly f points conjugate 
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over Fq,  in Kn n V and f= Fq x : Fq if and only if f is the smallest 

integer such that x belongs to Fqf n.  

Let Nf=number of points in V n Fqf n 

Jf=number of points in V n Fqfqf n - U V n Fqf n 

If=number of maximal ideals of A of norm q.  

We have proved that Jf=fIf. By definition of the Z- function of V we 

have 

Zv s=Za s=n 1 - nM-s-1 

meSpm A= Y\ 1 - q-sf M-1 

meSpm A 

where f M is defined by the equation N M=qf M So we observe that 

we can substitute t=q~s in the zeta function and not only t=p~s as in the 

general case and get a new zeta function. Zv s=f[ 1 - tf M-1=f] 1 - 

tf-If=Zv,  q t 

meSpm A f=1 

Therefore 

Log Zv,  q t=J] -If log 1 - tff=1 

TO TO Af f=q k=1 

_ y1 y1 tkf= VVTT 

fn=n=1 

TO= Z N- f 

Thus Cv. tid exp X N„ — ,  where N„ is the number of points of V 

in Fq. We have already observen that this is a power series with integral 

coefficients.  

Theorem. Zv,  q t is a rational function oft.  
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We shall show that in order to prove the rationality of ZA t where t=q-

s,  it is sufficient to prove the rationality of Za t where t=p~s.  Since 

ZV,  q t and ZV t are both convergent in a neighbourhood of the 

origin,  we have 

ZV,  q tf=ZV t with q=pf.  

Let u be any f-th root of unity. Then 

ZV jUt=ZV,  q U ftf=ZV,  q tf=ZV t 

If we have U XUW 

then also ,  =Z,  ZLo b^k 

/U Z,  ZLo<Vf* _ Zto MZ^V ZLo c&pnW 

Ho<k<[n/ f] bkftkf 

Z0<k<[n/f] Ckftkf 

Uk=0 if k0 mod f 

Thus we get 

Z bkftkf_? / 

0<k<[n/ f] 

Bkftk ~ 0<k<[n/ f] =ctft» 0<k<[n/ f] 

Hence ZVq t is a rational function of t.  

10.8 REDUCTION TO A HYPER-SURFACE 

We shall show that to prove our theorem it is sufficient to consider the 

zeta function of a hypersurface V defined by a polynomial P X1Xn 

in Fp[X1, . . .,  Xn]. We know that we can write V=P| Vi where each Vi 

is a hyper surface. Letbe any subset of { 1,  2 ,  r } and Ve=Pi V.  

ie E 
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Let Nv respectively Nve be the number of points of V respectively Ve 

in any field FPn. We now prove that 

Nv=^ -11n () NVE  

where n () is the number of elements in.  

Let any point x in V belong to k hypersurface Vj where 1<k<r.  Then x 

appears l times in the right hand side of equation I,  where 

I=r-kC00kC1 - r-kC0kC2r-kC^••• -1s+1 

 kCsr-kC1kCs-1.. . kChr-kCs-h.. . .. .  

= X r- kC,  X -1h"-'Ch 

<= _1f-1 r-kC,   

Thus I=0 or 1 according as r<k or r=k. Hence the equality  is established. 

This proves that 

Zv ,  =n^VE ,  ] -11+n ()   

This proves that it is for a hypersurface.  

Let V be a hypersurface defined by the polynomial P X1,  X2, . .. Xn in 

Fp[X1;... Xn]. Let Bbe any subset of { 1,  2, . . .,  n }. Let 

Wb={ x| xV,  xj=0 for i not in B } 

Ub=|x|xWb,  J~[ Xi=0 

It is obvious that V is union of disjoint subsets Wb - Ub where B runs 

over all the subsets of { 1,  2, . . .,  n }. Hence the zeta function of V is 

the product of the zeta functions of the varieties Wb - Ub and that  will 

be a consequences of the following Theorem.  

Theorem.  Let P be a polynomial in Fp[X1, . . .,  Xn]. then the zeta 

function  of the open subset defined by n X=0 in the hyper surface W 

defined by P is a rational function.  

Computation of Nr 
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We shall adhere to the following notation throughout our discussion.  

X= X1... ., Xn+1,  XiFp.  a= a1, . . .,  an+1,  aiZ.  

x=xa ••• xx n+1 

|a|=«1«2... n+1.  

Let x be any additive character of Fpr. Then we have ^ x UPX1, . .. ,  

Xn=0 if P X1, . . .,  Xn*0 

UeFpr 

= p if P X1, . . .,  Xn=0 

Therefore 

z z x UP X1, . . .,  Xn=pNr 

X1 eF'pf UeFpr 

where pNr= p - 1n^ n1x Xn+1 P x1,. . .,  Xn 

Xe F'Pr 

Let 

Xn+1 P Xi, . Xn=^ aa X 

where only a finite number of aa are nonzero. Then 

X Xn+l P=Y\ X aaXa.  

Therefore pNr= p - 1nx n X aa, . . .,  X 

XE F'pfn+1 a 

We take the character X defined by X t=n <p tp. where k= 0 

1.0.1 fRr such that /'=/ and <p y=F C - \, y,  C being a primitive 

pth root of unity. Thus from equation  we get 

pfNr= pr - 1n +^ n n ^ ba^x<= Ppr n+1 a k=0 where=xh F,  X*,  

ba=aa and ba belongs to W \. Let 

G §=["[ <p ba§a~ and Gr §=f[ G ^.  
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Then 

pfNr= p - 1n^ GJg 

fe R;n+1  

We have already proved that G ^ is analytic for ^ integral.  Therefore 

Gr ^=^ graP 

aeZn+1 

Then 

pNr= p - 1n +2 G <= 

fe Rpn+1 = / - 1n^ gra ^ T 

aeZn+1 fe Rpn+1 

 p - inz &n z & 

aeZn+1 i=1 V i 

But 2 ^i=0 if ai0 mod p - 1 

= p - 1 if ai=0 mod p - 1 Therefore 

PN= P - 1n +2 ga P - 1 

a= p -1 

= P - 1n^ gpra-a P - 1n+1  

Trace and Determinant of certain Infinite Matrices 

[X1, . .. ,  Xn+1] 

power series in n1 variables over K. Let H=Z haXa by any element 

a of A. We define an operator Th on A as follows 

Th H=HH for every H inA.  

For any integer r we define an operator Ar Such that 
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Let K be any field and A=K 

taa X* =2 ara X*.  

It can be easily proved that these two operators are continuous for the 

topology given by the valuation on A defined earlier. Let us set rH,  r=Ar 

o Th. It is obvious that the monomials constitute a topological basis of A 

and the operator rH,  r has a matrix yap with respect to this basis,  

where yap=hra-p. It is trivial to observe that Thh=Th ◦ TH for any 

two elements H and H of A and Arr>=Ar o A'r for any two integers r and 

r. Moreover we have 

rH,  r=ArS o THHf — HlS-1 

where Hr X=H Xr.  

In order to prove the above identity it is sufficient to prove that the action 

of the two sides is the same on the monomials. We have TH0Ar X3=0 

if S is not a multiple of r 

Th o Ar X'r=T/fX^ if jS is a multiple of r 

ra +jfi 

with the convention that coefficient of X r=0 if r does not divide s.  

Therefore 

Th o Ar Xs=Ar=Ar o <H 

Thus 

rH,  r=Ar o Th o Ar o Th = Ar o Ar o TH r o TH = Ar2 o TH,  Hr 

Let us assume that we have proved that 

r' H,  r=ArS o THoH ro... oH rs-1 

Then 

rH;1=rsH,  rorH,  r=AjsThoH2•••oH oa°°Th 

= ArS Tho Th 2 TH rS-1 o Ar o Th 
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= ArS+1 Th ◦ Trfr O ... O Ttf rs 

We observe immediately that r^r is an operator of the same type as rHr 

namely rsHr=PH O r where r=Is and H=H Hr... Hr 1.  

Theorem. Let us assume that K=O the complete algebraic closure of Qp 

and r=pf. Let us further assume that the coefficients ha tend to 0 as |a| 

tends to infinity. Then the series Tr rH-r =rHraa giving the 

,  a,  trace of r with respect to the basis Xa is convergent and we have 

=m H p" 

V ' fe R*fsn+1 Proof. For any monomial X3 in K[[X1, . . .,  X^+1]] 

ThAX3=Ar O^ haX 

=harX+ a 

Therefore the matrix of the operator rH,  r with respect to the basis  X3 

is jap with 

TayS=hra-p and Tr ^ H,  r=Z hra-a. But ha tends to a 0 as|a|tends to 

infinity,  therefore the series Z hm-a is convergent in a K. We have 

already proved that 

Y^H p= r - 1n+12 hra-a 

Therefore 

T' V"-'= r_\n+l Z H P 

V ' pr-l =1 

Hence our Theorem is proved for s=1 for s>1,  r^r is of the same type as 

rH,  r Thus our Theorem is completely established.   

 

Corollary. psNs= ps - 1n ps - 1 Tr rs where r=fc,  p we have already 

proved that psns= ps - 1n  

fe ^,  n+1 k=0 
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Therefore the corollary follows from the Theorem.  

Meromorphic character of ^V t in O 

We have observen that 

Zv t=exp n+1 

Ns=^ H -1n-ips i-1^+ M -1n+1-i'ps i-1 Trr 

i=0 \i' i=0 x 1 ' i=0 

Therefore o ts 

where A t=exp I - X— Tr P s=1 s 

So in order to prove that ZV t is meromorphic in O,  it is sufficient to  

prove that A t is every where convergent in O.  

If r were a finite matrix,  then its trace is well defined. If the order of the 

matrix is N,  then N Tr r5=^ dSare the eigen values of r.  

Moreover 

A t=exp = det I - tf 

If r is an infinite matrix,  we define det I - tr=2 dmtm,  where 

m=0 dm= -1 ^ ^ eajil 7i^ 1.. . 7imV m 

1<i'1<<im o 

so being the signature of any permutation o in sm.  Then for r=rg,  p we 

get 

dm= - 1m '2 Y-i So7«1 «o i... Yamao mai being distinct.  

ai 1<i<m oes,   

Let us assume that there exists a constant M such that  

v ga>M |a|. Then 

v jap=v gpa-p>M|pa -5 | > M p|a |-| 5 I 

We consider one term of the series giving dm mm 
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n YajYo j =Yj <Yajao jj=1 

M^p|aj|-|a^ j |J M p - 1^ a j 

Now there exist only a finite number of indices ai such that their 

length|a|is less than some constant,  therefore the series dm converges.  

Moreover we get v dm>M p - 1 inf ^ a j where infimum is taken 

over all the sequence a1, . .. , am. Let pm=inf 2|aj |. Now let us 

order the sequence of indices aZn+1 in such a way that|ai |<| ai+1 |,  

then we have pm =I ai|and we observe immediately that 

lim — =V* ai=co m^<tt m 

Therefore tends to infinity as m tends to infinity. Hence we get 

the following Theorem.  

Theorem If an element G =gaX satisfies the condition 

aeZn+1 C v ga>MI a | 

then the series det / - tr with r=rG is well defined as an element of Q[[t. 

]] and is an every where convergent power series in Q.  

It is evident from the above discussion that if we prove that 

The function G defined by=n<p aa^a satisfies the condition C  

/ ~ Is Tr rs \ 

The formal power series exp - and det I - /T are \ s=1 s  identical.  

Then A t is every where convergent in O which implies that <=v t is 

meromorphic in O. when r is a finite matrix.  

Let rh denote the matrix of first h rows and columns of r.  

Then et I - tTh=exp -^ s=1 =df 

where= - 1m 2 7h vm ... 7^,  •,  being an element of m.  
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<i1 <i2<... <im<h { m' 

Therefore m'•= -f Vm=0 

We shall show that dm converges to dm and Tr rsh tends to Tr rs as h 

tends to infinity. We have 

dm - dm= -1 ^ ^ d1 a^ 1 ... «m«^ m1 a„ &em 

Obviously v dm-dfy tends to infinity as h tends to infinity. Similarly /Tr 

rs – Tr rsh=v 1-a2 - a1 ^ gpa1 -a2 a1 •••as <h 

tends to infinity as h tends to infinity. In order to prove that the function 

G satisfies it is sufficient to prove that each term ^ aa^a of 

the product satisfies. We have 

<p t=F Z - 1,  t 

But F Y,  t=Am Ytm with Am Y=YmBm Y and Bm Y belongs 

m=o to O[[Y]]. Therefore 

v aan =Z - 1mBm Z - 1 a«Zam 

m=0 a h<^- i=0 

Thus hp=0 if pam 

- Z ~ l>Bpja Y - 1 aa- which shows that 

'=' 1W |a| p - 1 \p - 1 |a|/ 

Because Bp/a Z - 1^" is of positive valuation. Hence G satisfies.  

We have proved that Zv t is convergent in a disc |t|<S<1 as  a series of 

complex numbers and is meromorphic in the whole of Q,   therefore by 

the Criterion of rationality proved earlier we obtain that Zv t is a 

rational function of t.  

10.9 ALGEBRAIC AND TOPOLOGICAL 

PROPERTIES 



                                                                                            Notes 

79 

Notes Notes 
We recall the definitions of the valuation ring 

o={ x G K|v x>0 }={ x G K | |x |<1 },   

the units 

u={ x G K|v x=0 }={ x G K||x|=1 } and the corresponding maximal 

ideal 

m={ x G K|v x>0 }={ x G K||x|<1 }.  

We have observen that Zp := B\ 0=op,  i..  the open unit ball in Qp is 

the valuation ring. This ring op is a local ring with maximal ideal 

m=Zp\Zp = { x G Zp| |x |p<1 }={ x G Zp|xo=0 }={ x=pEP=o xi+ip
1
 

}=pZp.  

Remark. The map tpp  : Z p  ^ Z ,   a=i=0  a ip
i
 ^ a0 ,   defines an 

epimorphism from Z p  to Fp=Z/z and is known the reduction 

map modulo p. Furthermore the kernel of p p  is ker pp={ x G 

Zp|x0=0 }=pZp,  thus,  from the fundamental theorem of 

homomorphisms,  we observe that  

Z p
/ =F=

Z
 / .   

p /
p Z p =

f
p= / p Z .   

Remark. For the valuation ring,  units and maximal ideal ,   

we have the following set equali ties:  

Zp n Q={ f G Q|p t b }=Op,   

pZ p  n Q={ f G Q|p t  b A p |a }=mp and 

Z
p 

n  Q
=

Z /
p Zp  

n  Q
=

{  
f 

G  Q 1
 p

t ab }
=

u
p=

Op/
mp.  

Proposition.  The valuation ring o p =Z p  is a principal ideal 

domain, w i th  t h e  p r i n c ip a l  i d ea l s  { 0 } an d  p
n
Z p  fo r  a l l  n  

G N.  

Proof. As Zp C Qp,  it is an integral domain.  

Now let a={ 0 } be an ideal in op and consider an element a G a\{ 0 } of 

maximal absolute value. Such an element can be found,  since the value 

set is discrete. Furthermore let n be the p-adic order of a,  then a 
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=•  p
n
,  for a unitG up,  thus p

n
 =

-  1
 •  a G a,  which means 

that p
n
=p

n
op C a.  

Conversely,  for each a G a we have |a|p=p
-m

<p
-n

,  thus a=<=p
m

 = 

<=p
n
p

m-n
 g p

n
op,  therefore a C p

n
op.   

Remark. As o p =Z p  is an integral domain,  Q p  can be 

considered as its quotient field  Quot Zp  and Qp=Zp[p
-1

]. For a 

G Zp\{ 0 },  a=<=p
n
,  f o r  a  u n i t  G u p ,   i t  i s  e as y t o  

o bs e r v e  t h a t  a
-1

 G p
- n

Z p .   

We have observen that we can write each xQp as x=p
m

x,  with mZ 

and xZp. 

Proposition.  The balls p
n
Z p ,   for all  n Z ,   constitute a 

neighbour- h o o d  ba s i s  o f  0,  w h i ch  co v e rs  a l l  o f  Q p .   

Proof. B1 0=Zp C Qp is clopen,  thus it is an open neighbourhood of 0.  

The map Qp ^ Qp,  x ^ px is a homeomorphism,  thus p
n
Zp is an open 

neighbourhood of 0. Now from the p-adic representation it follows that 

Qp=UneZp
n
Zp and those p

n
Zp actually are a neighbourhood basis for 0,   as 

for any arbitrary open set U around 0,  there exists a n0Z such,  that 

Bp-no 0 C U.  

Remark. Once again we have a strong connection between 

the topol o g i ca l  an d  a l geb r a i c  p ro p er t i e s  o f  p - ad i c  

n um b er s ,   a s  f o r  an  e l em en t  x Q p  we can consider vp  x  

as the largest number,  such that x p
Vp x

Zp.   

Example. Consider x=x -5p
-5
x -4p

-4
... x -1p~

2
xox1p + x2p

3
.. 

.,  x -5=0,  then it is clear that x p
-5

Zp ,   but x p
-4

Zp,  as from 

x=p
-4

 x -5p
-1
x -4x -3p... x0p

4
x1p

5
... =p

- 2
x  

we observe that xZp and thus vp x=-5.  

Remark. For n N and x,  yQ p  we have 
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y B p-n x   ^ x — y p

n
Z p and we write  x =pn y,   or even 

shorter x =n  y.   

Definition. A Hausdorff
1
 space is a topological  space in 

which each pair of distinct points of X have disjoint 

neighbourhoods.   

Proposition.  Every metric space  X,  d  is a Hausdorff space.  

Proof. We have to show that the topology induced by the metric d is 

Haus- dorff. Let x,  yX be two distinct points,  that is,  d x,  y=0 and 

consider the open balls Bx := Bd x,  y  x and By := Bd x,  y  y. 

Those are obviously open sets in X and to observe that they are disjoint,  

we assume there exists a zBx n By,  but that means that d x,  z<
d  

x
2

y
 and d y,  z<

d  x
f

y
^,  thus d x,  zd z,  y<d x,  y,  which is a 

contradiction to the triangle inequality.  

Example. The converse of the above remark is not true ,   for 

example consider the set  of all ordinal numbers with the 

discrete order topology.  

Proposition.  Let X be a Hausdorff space . Suppose that Y C 

X and that a is a limit point of A. Then each neighbourhood 

of a contains infinitely many points of A .  

Corollary.  In a Hausdorff space the limit of a sequence is 

uniquely defined. This astonishing fact is  not true for 

general topological spaces .  

Proposition.  The p-adic field Q p  is a totally disconnected 

Haus- dorff space.  

Proof. As a metric space Qp is a Hausdorff space and since its metric is 

an ultrametric,  Qp is totally disconnected.  

Definition. A metric space X,  d  is known compact ,  i f and 

only if  for each open cover of X there exists a finite 

subcover of X. The metric space is known locally compact ,  

if and only if every x X has a compact neighbourhood.  
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Proposition.  The set  of all  the the balls in  Q p  is countable.   

Proof. For any arbitrary ball Br x with radius r,  we know that there 

exists an integer zZ,  such that r=p
-z

. With write x=i= -m  xip
i
. Now if 

we take the z-th partial sum z0 of this series,  we easily observe that 

z0Bp-z a and this,  together with the fact that the set of possible 

radii is countable the proposition. 

Proposition.  The field Q p  is locally compact with compact 

valua t io n  r in g  Z p .   

Proof. Using the uniqueness of the p-adic expansion and the pigeonhole 

principle,  we can construct a sequence of subsequences,   proving that 

Zp is sequentially compact,  thus as a metric space,  compact. Let an be 

a sequence in Zp and for each n write an=°=0  a
 n

^p
i
,  then,  by the 

pigeonhole principle,  we can find an element b0{ 0, . .. , p—  1 },  

with a0
n

=b0,  for infinitely many n. This yields a subsequence of an,  

namely abon,  whose terms all have b0 as first digit in their p-adic 

expansion. Repeating this construction inductively we obtain the 

desired sequence of subsequences of an, abknnk with abkn being 

a subsequence of abk+inn,  as well as a p-adic integer b=°=0  bkp
k 

such,  that every term of abknn has the same k1-first digits as b. It is 

then clear that the sequence of the diagonals abkk is a subsequence of 

an which converges to b,  which proves that Z is sequentially compact,  

as desired. As Zp=op=Bi 0=Bp 0,  it is evident that every ball in Qp is 

compact,  thus Qp is locally compact.  

Check your Progress-2 

Discuss Zeta function of a prescheme over fp & fq 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

10.10 LET US SUM UP 
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In this unit we have discussed the definition and example of Zeta – 

functions, Fields of finite type over z, Convergence of the product, Zeta 

function of a prescheme, Zeta function of a prescheme over fp, Zeta 

function of a prescheme over fq, Reduction to a hyper – surface, 

Algebraic And Topological Properties 

10.11 KEYWORDS 

Zeta – functions…. Let R and S be subrings of K containing a unit 

elements such that S is finitely generated over R . 

Fields of finite type over z….. The infinite product Za s is a absolutely 

convergent for Re s>dim A and uniformly convergent for Re s>dim As 

for every s> 0.  

Convergence of the product….. Let A be a commutative ring with unity. 

We shall denote by Sp Athe set of all prime ideals of A . 

Zeta function of a prescheme….. Let S be a prescheme over Z of finite 

type. We have a canonical map from a prescheme S to Sp Z  

Zeta function of a prescheme over fp In order to prove Dwork's theorem 

it is sufficient to prove it for an affine scheme and open sets of an affine 

scheme because of the equation.  

Zeta function of a prescheme over fq….. We shall show that to prove our 

theorem it is sufficient to consider the zeta function of a hypersurface V 

defined by a polynomial P X1Xn 

Reduction to a hyper – surface….. Algebraic And Topological 

Properties….. We recall the definitions of the valuation ring o={ x G 

K|v x>0 }={ x G K | |x |<1 },  

10.12 QUESTIONS FOR REVIEW 

Explain Zeta-functions 

Explain Zeta function of a prescheme over fp & fq 
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10.14 ANSWERS TO CHECK YOUR 
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Zeta-functions     

 answer for Check your Progress-1 Q 

Zeta function of prescheme over fp & fq     

answer for Check your Progress-2 Q  
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UNIT-11 : ELEMENTARY 

FUNCTIONS   

STRUCTURE 

11.0 Objectives 

11.1 Introduction  

11.2 Elementary Functions 

11.3 An Auxiliary Function  

11.4 Semi Simple Lie Groups 

11.5 Lie Groups 

11.6 The Universal Enveloping Algebra 

11.7 The Concept Of Free Algebras 

11.8 Let Us Sum Up  

11.9 Keywords  

11.10 Questions For Review  

11.11 References 

11.12 Answers To Check Your Progress 

11.0 OBJECTIVES 

After studying this unit, you should be able to: 

 

 Understand about Elementary Functions 

 Understand about An Auxiliary Function  

 Understand about Semi Simple Lie Groups 

 Understand about Lie Groups 

 Understand about The Universal Enveloping Algebra 

 Understand about The Concept Of Free Algebras 
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11.1 INTRODUCTION 

In mathematics, p-adic analysis is a branch of number theory that deals 

with the mathematical analysis of the functions of p-adic numbers. 

Elementary Functions, An Auxiliary Function, Semi Simple Lie Groups, 

Lie Groups, The Universal Enveloping Algebra, The Concept Of Free 

Algebras 

11.2 ELEMENTARY FUNCTIONS 

We consider the convergence of the exponential logarithmic and 

binominal series in this section. We assume that the field K is of 

characteristic 0 and the real valuation v on Q induces a p-adic valuation.  

The exponential series c{ x=2 —. Converges in the disc if x>n=0 n! 

and in the domain of convergence ifx - 1=v x. Let n=p - 1 

a0a1 p•••arpr where pr<n<pr+1 and 0<aj<p - 1. One can easily prove 

that 

n~ Sn P~ 1 r 

where Sn=X at Therefore 

i=0  _ "ISn p - 1 n p - 1 

Sn /log n \ ^ ii -1 

But < i-l.   

Hence the 

p - 1\log p  n p - 1 

for if x= The latter part of the assertion is trivial. We 

p – 1 observe immediately thatxy =x.y andx has no 

zeroes in the domain of convergence.  

™ k, yk 
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We define log 1y=2 -1— as a formal power series over k=1 k K. 

We shall show that the series log 1y converges for v y>0 and 

v log l/=v y for if/ >   we have 

p – 1 log n i -1nyn \ But v n<  therefore 4'   tends to infinity as n 

— » oo when 

log p n 

ever v y>0. On the other hand v n=0 if n,  p=1,  therefore the 

series is not convergent for if /<0. For n>1 and if / > p - 1 it can  

 -1n-1yn \ 

easily proved that d I>if/,  which proves our last assertion.  

Moreover for if x> — - — we have the equalities p - 1 

e log 1x=1x   

log (x=x   

Let 

G=\ x|xK,  v x > p – 1  

be subgroups of K+ the additive group of K and K* respectively. The 

mapping x ^x is an isomorphism of G onto G',  the inverse of which 

is the mapping 1x ^ log 1x. In fact the mapping 1y ^ log 17 is a 

homomorphism of the group 1Yfo H begin the complete algebraic 

closure of K into the subgroup of H+,  where v y>0. It is not 

an isomorphism because it ^ is a p-th root of unity,  then v C~1 = - 

P – 1 and log Z=0.  

We define 1YZ=2 h m,  Z Ym =Zlog 1Y where 

m=0 ui 7\ Z Z- I- Z- m+I ..  .  
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h m,  Z=  as a formal power series in the van- m! 

ables Y and Z over K. Since h m, Z is a polynomial in Z,  we can 

substitute for Z any element of K to get a power series in the one variable 

Y.  

Proposition. For any element t in K the power function 1x defined  

above is analytic for v x >  respectively for v x>-v t-{   

p - 1 p - 1 

ifv t>0 respectively if v t<0 Moreover if t belongs Zp,  then 1xt is 

analytic for v x>0.  

Proof. When v t<0 

m- 1 

v h m,  t=m v t - v m\>mv t - 

p - 1 

Therefore = / p 3_ Hence 1x' is analytic 

m p – 1 in ifx> — - if/. Similarly one can prove the convergence 

when p – 1 v t>0.   

Let t be in Zp. Then h m,  t is a p-adic integer.  

Suppose that v m!1=a,  then there exists an element km in Z such that 

t=km mod pk 

Therefore 

t t - 1 ... t - m1=km km— 1 

h m,  t=h km,  m mod p.  

But h km,  m is a rational integer,  therefore v h m,  t>0. From this 

our assertion follows easily.  
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11.3 AN AUXILIARY FUNCTION 

Throughout our discussion Fq shall denote a finite field consisting of q 

elements. Let us consider the infinite product 

ppP— jpm  

F Y,  T= 1Yt 1Yp P 1O Pm 

The product is well defined as formal power series in two variables Y 

and T over Q. Clearly is convergent in QF Y T as a power series over 

Q[T] 

TO 

F Y,  T =Bm TYm,  d Bm T 

am YTm,  

we obtain m=0where am Y is a power series,  the terms being of 

degree>m.  Theorem. The coefficients of F T, Y are p-adic 

integersTheorem. If F is an element of Q 

 F Y,  ZP 

if only if the coefficients of ^ ^ are in pZD 

F Yp,  Zp p 

Proof of Theorem. Let us suppose that F Y Z=1 - X a2,  Y'Zj then 

i+j>0 ^ F YZp r r u G= —— — — -=F\ xF2  

where F Yp, Zpr 

Fi=1 - p ^ ai/ZJ••• P -1r ^ aiJYiZJ \i+J>0 

If G=12 t>ijYiZj,  then 

i+j>0 

bij=- paij terms of the form pX polynomials in a with rational integers 

coefficients with 
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i1...ik=i' j1...jk=j' 

irjr>0 

+ -1p Yt ap1j1ai2 j2 ... aikjki1...ik=f 

j1...jk=j 

irjr>0 

where the last two sums appear only if i and j are divisible by p and in  

this case pi'=i,  pj=j.  

Assume that bij belongs to pZp for ij>0. We shall prove that ay are in 

Zp by induction. Obviously a00 is in Zp. Assume that arsZp for 

rs<ij; then in the formula giving bij all the terms except perhaps - paij. 

But a - ap belongs to pZp if a belongs to Zp,  therefore paij belongs to 

pZp and aij belongs Zp. The other part of the assertion is trivial 

TPm __ r[Pn -1 

 1Ypt n 1YpB Pm' m=1 

T^— Tpm -1 

 1Yptp n 1Ypm pm m=2 

 1Yp " 1Yp 

a^bkYk 

k=1wherebkarep-adicintegers.  Moreover m 

1p<= bkYk =h m,  TpmbkY 

m=0 v pm m - 1 F Y,  T p 

F2=12 2 a,  jYpiZPj 

k=1 \i+j>0 
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But   — >in > 0,  therefore— —— — - - 1 has its 

m! p- 1 F Yp,  Tp 

coefficients in pZp. Thus by Theorem the coefficients of F Y,  T are p-

adic integers.  

One deduces that F y,  t is analytic for v t>0 and v y>0,  because if v 

t>0,  then v Bm t>0 because Bm t is a 

polynomial with coefficients from Zp. Therefore the series Yj Bm tym 

m= 0converges for v y>0.  

Factorisation of additive characters of a Finite Fields 

jx|xnp=n,  xP=xj. We have the canonical map from 

R2 to Fps namely the restriction on the canonical homomorphism of t 

onto kO. In order t prove that thi s map i s bijective,  it i s sufficient to 

prove that is surjective ; because both Rs and Fps have ps elements. If x 

± 0 is in Fps,  then xp-1 -1=0 and x is a simple root of the polynomial 

Xp-1 - 1. Therefore by Hensel's Theorem there exists an element a 

belonging to O such that a=x and apS-1 - 1=0,  which proves that a is in 

R2 and the mapping is onto. Infact the canonical homomorphism of OO 

onto kO when restricted to R=U R2 is an isomorphism onto kO. Finally 

s= 1 

Hensel's Theorem shows that R1 is contained in Qp.  

Let Us=Qp Rs. Clearly Us is a Galois extension of Qp and the Galois 

group is cyclic generated by the automorphism a : p ^ pp,  where p is a 

primitive ps - 1 th root of unity. Moreover Us is an un- ramified 

extension of Qp,  because [Us; Qp]=[Fps; Fp]. If we take TO 

U=Us,   

then the completion of U is the maximum unramified extension of   Qp 

in O and a is known the Frobenius automorphism of U. If t is an elements 

is R2,  then 
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Tr t=ttp•••tps-1 

Us / Qp 

belongs to Zp. Thus the function 1YTr ^ is analytic for v y>0.  Let t 

be the representative of tFp2 in R2. If y belongs y belongs to YO then 

1yTr ^ belongs to O. We shall choose y in such a way that mapping t 

^ 1yTr ^ is a character of the additive group of Fps.  Obviously for 

any u and v in Fps we have 

 uv'=UV mod YO 

Tr UC=Tr Utr V mod YO 

= Tr UTr V mod pZp 

because Tr U is a p-adic integer. Therefore 

 1ytr u+v '= 1yTr U 1yTr V 1ya,  

where a belongs to pZp. Let us take 1y=Z where Zp=1 and Z1.  It 

follows that 1ya=1. Thus the mapping u ^ ZTr U is a character of Fps. 

We shall show that it is a non -trivial character. Firstly,  Za=1 if  

and only if a belongs to pZp proved that a already belongs to Zp. For by 

choice of y we have v y = > 0 and p - 1 

Za= 1ya=1ay•••h m,  aym••• 

Since a is p-adic integer,  v h m,  a>0 and hence v h m,  aym > 

2 2 2 for in>2,  a+ya1 if if ay < - Therefore if ay > p - 1  

which implies that a belongs to pZp. But the p - 1 

canonical image of Tr U in Fp is the trace of u as an element of Fps over 

Fp,  therefore there exists as least one U such that Tr U is not in pZp. 

Hence the mapping u ^ ZTr U is a non-trivial character of Fps. By 

definition of the product F Y,  T we have 

ilF - F y, l/= l+yf P" 
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U pm+1--upm 

F y,  i/p= 1yfp ... 1ym -P" 

^pm+s-i - ^pm+s-i 

F y,  iYpS 1= 1yf^ X ... 1y^ P" 

Since Up=U,  by multiplying these identities we get 

s-1 

xTr U 

Y\F y,  Up= 1yT 

Thus ZTr=n f U  where ip T=F Z - 1,  T,  is the splitting of 

additive characters of Fps which we shall require later.  

Check your Progress-1 

Discuss Elementary & Auxiliary Functions   

11.4 SEMI SIMPLE LIE GROUPS 

Let G be a semi simple Lie group worth a faithful representation. We 

state here two theorems the proof of which could be found.  

Theorem. The group G has a maximal compact subgroup and all the 

maximal compact subgroup are conjugates.  

Theorem Suppose that K is maximal compact subgroup of G,  then there 

exists a connected solvable T of G such that G=TK.  

We shall prove the following theorem about completely irreducible  

representation of G.  

Theorem. Every irreducible representation M of K is contained atmost   

dim M times in every completely irreducible representation of G.  

Proof. The finite dimensional irreducible representations of G is a vector 

H is a complete system of representations of L G. Let x ^ px be a 

representation of G in a vector space H.  
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We call the function d x={ pxa,  a' where a belongs to H and a' belongs 

to H* the con- jugate space of H,  a coefficient of the representation. 

Let V denote the vector space generated by all coefficients of all finite 

dimensional irreducible representations of G.  

Since every finite dimensional repre- sentation of G is completely 

reducible,  V contains all the coefficients of all finite dimensional 

representations of G. Let p1 and p2 be two finite dimensional irreducible 

representations of G. Then we have 

{ p\a1,  aj  p2xa2,  af, ={ p\ <8> p2xa1 <g> a2,  aj <8> af,  

showing that V is an algebra. Moreover V is a self adjoint algebra,  be- 

cause if d x={ pa,  al is in V,  then Q x={ pxa,  a! is also in V. Since 

G  has a finite dimensional faithful representation,  Vseparates points 

i.. , if d x=d d for every d in V,  then x=x\ Thus Stone- Weierstrass' 

approximation theorem every continuous function on G can be approxi- 

mated uniformly on every compact subset by elements of V.  

Hence if f is anon-zero elements of L G,  then f f xgxdx=0 for every 

element 

g of C G the set of all continuous functions on G,  because 

P f=f pxf xdx and<pxa,  a'>f xdx=0 

for every a in H and a' in H* and p. Therefore f must be =0 

The representations of G induced by all characters of T form a complete 

system for L G 

Let p be a finite dimensional irreducible representation of G and let 

V t 1 

p= p  be the representation contragradient to p. By Lie's theorem the 

restriction of p to T has an invariant subspace of dimension 1,  which 

implies that there exists a vector tf0 in E* the conjugate space V 
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of the representation spaceof,  p such that p t=t=x tt for every 

tT. Consider the mapping aE— "ascd~l,  where p x =< pxa,  t >.  

Since 

p tx =< ptxd,  t >=< pxa, prt~lf >= x~l t<pxa,  t >= x~1 tja x,  

p x is covariant by left translation. Obviously the map a— p is contin- 

uous. Let Ux~l be the representation of G induced by ^x-1. The mapping 

a— p is a morphism of representations p and Ux-1,  because 

"py a x= px pya,  b>=P xy=Ux-1 a.  

The mapping a —>a is not zero. If a ± 0,  then pxa generates the whole 

spacebecause p is irreducible,  therefore for atleast on x in G pxa,  

t>0 ^ p0. Let f be a non-zero element of L G. If Uf 1=0. For every x 

then pf=0 for every p which means the f=0 This is a contradiction,  hence 

our result is proved.  

We shall show that if x is a character of T,  then M occurs at- most dim 

M times in Ux. Clearly Ux/^ restriction of UtoK =UX/KnT   gut the 

space of this representation is the space of continuous functions f on K 

such that 

f tk=x t f k for tK n T.  

Therefore U/KnT is a sub representation of the right regular representa- 

tion of K. Hence Cxm c Lm K which is a space of dimM2. Thus M 

occurs at most dim M times in U.  

11.5 LIE GROUPS 

Definitions and foundations 

Definition.A Lie group G over K is a manifold over K which also 

carries the structure of a group such that the multiplication map 

m=mG : G x G — - G  g, h  — - gh 

is locally analytic.  
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In the following let G be a Lie group,  and lete G denote the unit 

element.  

Theorem. For any hG the maps 

<=h : G G and rh : G G 

g  — - hg g i — - gh 

are locally analytic isomorphisms of manifolds.  

Proof. By symmetry we only need to consider the case of the left 

multipli- cation <=h. This map can be viewed as the composite 

G — - G x G G 

g1 — - h, g.  

The left arrow is locally analytic by Example 8. 5. 4 and the right arrow 

by assumption. Hence the map <=h is locally analytic.  We obviously 

have <=h o <=h-i=<=hh-i=<=e=idG and then also <=h-i o <=h=idG.  It 

follows that- :=<=h-i is locally analytic as well.   

Corollary. For any two elements g, hG the map 

Tg <=hg-i: Tg G — Th G 

is a K-linear isomorphism; in particular,  

Te <=g: Te G Tg G 

is an isomorphism for any gG.  

Corollary. Every Lie group is n-dimensional for some n>0.  

Proof. We have dim G=dimK Te G=dimK Tg G for any g G G.  

Examples. Kn and more generally any ball B<= 0 as ran open sub- 

manifold of Kn with the addition is a Lie group.  

Kx and more generally B- 1 and B<= 1 for any 0 << 1 as open 

submanifolds of K with the multiplication observe that ab— 1 =  a— 

1 b— 1 a— 1 b— 1 are Lie groups.  
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GLn K viewed as the open submanifold in Kn defined by "det=0" with 

the matrix multiplication is a Lie group.  

Let g,  h G G. We know from Remark 9. 10. ii. that the map T pr: x T 

pr2 : T{ g>h G x G — U Tg G x Th G 

is a K-linear isomorphism. In order to describe its inverse we introduce 

the maps 

ih : G —>G x G and jg : G —>G x G 

x i —> x, h x i —> g, x 

which are locally analytic.  We have 

pU o ih=idG and pr2 o ih=constant map with value h 

and hence 

T pri o T ih=T idG=idT G 

and 

T pr2 o T ih=T constant map=0.  

This means that the composed map 

Tg G — U T gh G x G T prixT pr2 : Tg G x Th G sends t to 

t,  0. Analogously the composed map 

 Th G — U T gh G x G T pr —  X T pr2 U Tg G x Th G 

sends t to 0,  t. We conclude that 

Tg ihTh jg : Tg G x Th G T{ g, h G x G 

 tl,  t2 ' ► Tg ih tl+ Th jg t2 

is the inverse of T^h pri x T^^.  

Theorem. T g, h G x G ^ *Tgh G 

T pr1x'r pr2'==~"-^^^ ^^TArh+Th lg 

Tg G x Th G 
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is commutative for any g, h G G.  

Proof. We compute 

T g, h m ◦ T g, h pr1 x T g, h pr2-1=T g, h m 0 Tg 

ihTh jg 

= Tg m O ihTh m o jg = Tg rhTh lg  

Because of i2=idG it suffices to show that the map i is locally analytic. 

To do so we use the bijective locally analytic map 

g : G x G — ► G x G 

 x, y i — ► xy, y.  

We claim that the tangent map T g, h g,  for any g, h G G,  is 

bijective.  

T g, h G x G T 9, hM, T gh, h G x G 

T prixT pr2 

Tgh G x Th G 

in which the lower horizontal arrow is given by 

 ti, t2 1 — ► Tg rh tiTh lg  t2, t2 

is commutative. Suppose that t1, t2 lies in the kernel of this latter map.  

Then t2=0 and hence 0=Tg rh tiTh lg t2=Tg rh ti. The analog 

for the right multiplication implies that t1=0.  This lower horizontal map 

and therefore T g, h g are injective. But all vector spaces in the 

diagram have the same finite dimension. Our claim that T g, h p is 

bijective follows. We now can apply the criterion for local invertibility 

and we conclude that the inverse ^-1 is locally analytic as well. It 

remains to note that i is the composite ^GxG G  

is commutative. This reduces us to showing the special case in our 

assertion.  We consider the diagram 

Te GT e, )  G X G T PriXT^>Te G X Te G 
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T e, )  G X G T PriXT Pr2^ Te G X Te GTe G 

In the proof of Prop. 13. 6 we have observen that the map pT1 x, y= 

xy-1, y is locally analytic and that the central square in the above 

diagram is com- mutative. The top triangle is commutative. The 

commutativity of the bottom triangle is trivial. It remains to observe that 

passing from top to bottom along the left,  resp. right,  hand side is equal 

to Te i,  resp. to the multiplication by -1.   

Corollary. For every nZ the map 

fn : G g 1 — ► g" 

is locally analytic,  and Te fn coincides with the multiplication by n.  

Proof. Case 1: For n=0 the map f0 is the constant map with valueand 

Te fo=0.  

Case 2: Let n>1. We can view fn as the composite 

G G x. .. x G ^ g,. . ., g 

 gl,. . ., gn 1 ► gl. .. gn.  

Both maps are locally analytic,  the left diagonal map and the right 

multiplication map by assumption. Hence in the diagram 

Te G x. .. x G 

Te mult 

Te G m T pri 

Te G X. .. X Te G 

the top,  resp. bottom,  composed map is equal to Te fn,  resp. the 

multiplication by n. But this diagram is commutative,  the left triangle for 

trivial reasons and the right triangle as a consequence.  

Case 3: Let n< — 1. Since fn=f-n o i 

Te fn=Te f-n o Te i= — n  id o — id=n  id.  
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already indicates that the tangent space Te G in the unit element of G 

plays a distinguished role. We want to investigate  this in greater detail.  

Proposition.  

rT : Te G x G — ^ T G and lT : G x Te G — ^ T G 

 t, g 1 ► Te rg t  g, t 1 ̂  Te lg t 

are locally analytic isomorphisms of manifolds 

Te G X G 

G X Te G 

is commutative.  

Proof. By symmetry it suffices to discuss the map rT. We choose a chart 

c= U,  p,  Kn for G around.  the map 

Qc : kn Te G v I —. [c,  v] 

is a K-linear isomorphism. We equip Te G with the unique structure of 

a manifold such that dc becomes a locally analytic isomorphism of 

manifolds.  This structure does not depend on the choice of the chart c. 

Of course,  we then view Te G x G as the product manifold of Te G 

and G. The inclusion map Te G T G is locally analytic since it can be 

viewed as the composite of the locally analytic maps 

Te G — I. Kn — I — u x Kn -. pG1 U— T G.  

We recall that tc g, v=[c,  v]Tg G is locally analytic by the 

construc- tion of T G as a manifold. Let 

Co : G T G g -. 0Tg G 

denote the "zero vector field",  i. . , the zero vector in the vector space 

r G, T G. that the composed locally analytic map 

Te G x G -*"1: T G x G -1 —. t G x T G 

<--- —, -- : t g x G— T G 
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sends t, g to Te rg tTg le 0=Te rg t and hence coincides with 

rT.  This shows that the map rT is locally analytic. It is easy to check that 

the map 

T G —. Te G x G ^ 1 .  

 TPG <t rPG <t-1  t, PG t 

is inverse to rT. Its second component pg is locally analytic It therefore 

remains to prove that the map 

f : T G -. Te G 

t 1. TPG<t rPG<t-1  t 

is locally analytic. we compute that the composed locally analytic map 

T G ld — : T G X G -X-1» T G x G X-X-1 T G x T G 

 T p, , xr pr,  -. : t g x g — l t G 

sends t to TPG t rPG t-1  t. It follows that the left vertical 

composite in the commutative  

T G -=T G 

is locally analytic. Since tc is an open embedding we conclude that the 

right vertical composite is locally analytic. With the lower oblique arrow 

therefore also the upper oblique arrow f is locally analytic. 

Corollary. The maps 

r G, T G C an G, Te G r G, T G 

<=f g := lT g, f g f  

Cf g := rT f g, g 

are isomorphisms of K-vector spaces.  

Proof. The mapsi — 1 pr2 o lT-1 o<= andi — 1 pr1 o rT-1 o<=,  

respectively,  are inverses.    

In Can G, Te G we have,  for any tTe G,  the constant map 
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constt g := t.  

We put 

<=t g := <=constt g=Te lg t and <=f g := <=ronstt g=Te rg t.  

Definition. A vector field<= T G, T G is known left invariant,  resp  

right invariant,  ifg=Te lg <= () ,  resp. g=Te rg <= 

() ,  holds true for any 

gG.  

Corollary. The maps 

Te G —>{G r G,  T G :is left invariant } 

t <=t 

and 

Te G — ► {G r G, T G :is right invariant } t— <=[ 

are K-linear isomorphisms.  

Proof. The mapi — > () is the inverse in both cases.   

Letbe a K-Banach space. With any vector fieldon G we had asso- 

ciated the K-linear map 

D : Can G, )  — ► Can G, )  

f f =df ◦.  

Ifis left or right invariant what consequence does this have for the 

map D^? K-linear  

G x Can G, )  — ► Can G, )  

 h, f— hf g := f h-1g 

of the group G on the vector space Can G, )  

as well as a right K-linear action by "right translation" 

Can G, ) x G — ► Can G, )  
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 f,  h fh g := f gh-1.  

Theorem. IfG r G, T G is right,  resp. left,  invariant then we have 

D? fh=D? fh,  resp. D? hf=hD? f,  

for any f G Can G, ) and h G G. In the case= K the converse holds 

true as well.  

Proof. By symmetry we only consider the "right" case. First we suppose 

thatis right invariant,  i. . , g=Te rg <= () . It follows that 

T rh-l 0g=Tg rh-l 0 Te rg <= () =Te rgh- <= ()  

=gh-1.  

We now compute 

Dg f h g=dfh og=d f o rh-i og 

= df 0 T rh-i 0g 

= df ogh-1=Dg f gh-1 

= Dg f h g 

where for the second line If vice versa Dg satisfiesthe asserted identity 

for some) then we have 

df 0 T rh-i 0g=Dg fh g=Dg fh g=Dg f gh-1=df 0gh-

1 

for any f and any g,  h. We rewrite this as 

df 0 T rh-i 0gh=df 0g.  

Withalso 

<=h g := T rh 0gh-1 is a vector field on G. Hence we obtain the 

identity 

Dgh=Dg for any hG.  
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Later on we will observe that G is paracompact. In the case= K the 

map^ Dg therefore is injective. It follows that <=h=<=,  i. . , that 

T rh 0gh-1 =g holds true for any g,  hG. In particular,  for 

g=h we obtain 

T rg <= ()  =g for any gG which means thatis right 

invariant.   

The Lie product of vector fields is characterized by the identity 

Dg 0 Dn Dn 0 Dg— D[g, n] 

Corollary. If the vector fields f and n on G both are left or right invariant 

then so,  too,  is the vector field [f,  n].  

we observe that for any s, tTe G there are uniquely determined 

tangent vectors [s,  t]i and [s, t]r in Te G such that 

f[s, t]t=[fs, ft] and f[S, t]r=[fr, ft].  

Then 

 Te G,  [, ]i - — - r G,  T G,  [, ] 

And Te G,  [, ]r  r G, T G,  [, ] 

are injective maps of Lie algebras. Is there a relation between the two Lie 

products [, ]i and [, ]r on Te G? For any fr G,  T G also 

f g := Tg-i i ◦ f g-1 

is a vector field on G. This provides us with an involutory K-linear auto- 

morphism 

L : r G, T G — ► r G, T G.  

Remark. Il Te G ^ * r G,  T G -1 

Te G -   r G, T G 

is commutative.  

Proof. we compute 
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' f! »=T i ◦ { t 9-1 }=T i ◦ T lg-i t=-T rg t=-ft g.  

Theorem. Any vector fields f and n on G satisfy 

[4f,  4n]=1f, n].  

Proof. we compute 

DT / g=d/ o= df oT i  { g-1=d / oi o{ g-1=D /oi g-1.  This 

amounts to the identity 

DT / o 1=D / o l.  

We continue computing 

 Ui? o Din / g=D Din / o l g-1 

= D? Dn / o l g-1 

= D? o Dn / o l g-1 

and consequently 

D[i ?, in] / g=[Dtf, Dtn ] / g 

= [D?, Dn] / o l g-1 

= D[?, n] / o l g-1 

= Di[«, n] / g.  

Corollary. We have 

[s,  t]r= — [s,  tjz for any s, tTe G.  Proof. Compute CMr=[<=, Cf]=[ 

— { !, — Cf ]=[{ -s, { -t] 

= [^c1 ^c1]=Hc1 c1]=L{ \ 

[ { s,  stJ l{ s, stJ { [s, t]i 

= C-Mi.  

From now on we simplify the notation by setting [s, t] := [s, t]r and Dt := 

Dq-for any s, tTe G. We then have the identity 

D[s, t]=Ds o Dt— Dt o Ds 



Notes 

106 

Definition. Lie G := Te G,  [, ] is known the Lie algebra of G.  We 

obviously have 

dimK Lie G=dim G.  

The guiding question for the rest of this book is how much information 

the Lie algebra Lie G retains about the Lie group G. The answer 

requires several purely algebraic concepts which we discuss in the next 

few sections.  

Definition. Let Gi and G2 be two Lie groups over K; a homomorphism 

of Lie groups f : Gi —>G2 is a locally analytic map which also is a 

group homomorphism.  

Definition. If gi,  [, ]i and g2,  [, ]2 are two Lie algebras over K then a 

homomorphism of Lie algebras a : gi —>g2 is a K-linear map which 

satisfies 

[a x, a y]2=a [x, y]i for any x, ygi.  

We write HomK gi; [, ]i,  g2,  [, ]2 for the set of all homomorphisms 

of Lie algebras a : gi —>g2.  

Exercise. For any homomorphism of Lie groups f : Gi —>G2 the map 

Lie f := Te f : Lie Gi —>Lie G2 is a homomorphism of Lie 

algebras.  

Check your Progress-2 

Discuss Semi Simple Lie Groups & Lie Group 

11.6 THE UNIVERSAL ENVELOPING 

ALGEBRA 

In this section K is allowed to be a completely arbitrary field.  

Exercise. i. Let A be an associative K-algebra with unit. Then A,  [, ]a 

with [x, y]A := xy - yx 

is a Lie algebra over K. In the case of a matrix algebra A=Mnxn K the 

corresponding Lie algebra is denoted by gln K.  
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ii. If the field K is nonarchimedean then we have gln K=Lie GLn K.  

How general are the Lie algebras in this exercise? Obviously A,  [, ]a 

can have Lie subalgebras which do not correspond to associative 

subalge- bras. We want to show that any Lie algebra in fact arises as a 

subalgebra of an associative algebra. A K-linear map a : g —>A from a 

Lie algebra g into a associative algebra A,  of course,  will be known a 

homomorphism if it satisfies 

a [x,  y]=a xa y— a ya x for any x, yg.  

At this point we need to recall the following general construction from 

mul- tilinear algebra. Letbe any K-vector space. Then 

T ()  := n>0E n where E0n := E E n factors 

is an associative K-algebra with unit note that E00=K. The multiplica- 

tion is given by the linear extension of the rule 

 Vi . ..  Vn Wi . ..  Wm := Vi . ..  Vn  Wi <g. ..  Wm.  

This algebra T () is known the tensor algebra of the vector space.  

It has the following universal property.  

Any K-linear map a : —>A into any associative K-algebra with unit A 

extends in a unique way to a homomorphism of K-algebras with unit a : 

T ()  —>A. In fact,  this extension satisfies 

a vi...  Vn=a vi . ..  a vn.  

Let g be a Lie algebra over K. Viewed as a K-vector space we can form 

the tensor algebra T g. In T g we consider the two sided ideal J g 

generated by all elements of the form 

x  y— y  x— [x,  y] for x,  yg.  

Note that x  y— y  xg whereas [x,  y]g0i. Then 

U g := T g/J g 

is an associative K-algebra with unit and 
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e : g — ► U g x i —>xJ g 

is a homomorphism. 

Definition. U g is known the universal enveloping algebra of the Lie 

algebra This construction has the following universal property. Let a : g 

— ► A be any homomorphism into any associative K-algebra with unit 

A. It extends uniquely to a homomorphism a : T g —>A of K-algebras 

with unit.  Because of 

a x y - y x - [x,  y]=a xa y - a ya x - a [x,  y]=0 we have J g C 

ker a.  

Hence there is a uniquely determined homomorphism of K-algebras with 

unit 

a : U g —>A with a o= a,  

is commutative.  

The tensor algebra T () has the increasing filtration 

To () C Ti () C. .. C Tm () C. ..  

defined by 

Tm ()  := 0<„<mE n.  

The Tm () do not form ideals in T (). But they satisfy 

Ti () • Tm () C Ti+m () for any l, m>0.  

Correspondingly we obtain an increasing filtration 

Uo g C Ui g C. .. C Um g C. ..  

in U g defined by 

Um g := Tm gJ g/J g 

and which satisfies 

Ui g • Um g C Ui+m g for any l,  m>0.  
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For example,  we have U0 g=K  1 and U\ q=K  1 +g. We define 

gr^ U g := m>o grm U g with grm U g := Um g/Um-i g 

 and the convention that U-1 g := { 0 }. Because of the K-bilinear 

maps 

gr1 U g X grm U g  ► gr1+m U g 

 yUi-i g, zUm-i g I — ► yzUz+m-i g 

are well defined. Together they make gr,  U g into an associative K-

algebra with unit.  

Theorem.  Poincare-Birkhoff-Witt The algebra gr^ U g is isomorphic 

to a polynomial ring over K in possibly infinitely many variables Xi and,  

in particular,  is commutative. More precisely,  let { xi }iei be a K-basis 

of g; then 

K[{ Xi }i€/] gr^ U g 

Xi i — ^xiUo g G gri U g 

is an isomorphism of K-algebras with unit.  

Corollary. The map: g —>U g is infective.  

Because of this fact the mapusually is viewed as an inclusion and is 

omitted from the notation. We observe that g indeed is a Lie subalgebra 

of an associative algebra.  

Corollary. Let d := dimK g<to; if xi,. . ., xd is an ordered K - basis of g 

then { xil . ..  xim : m>0, 1<ii <. .. <im<d } is a K-basis of U g.  

Proof. The Theorem Poincare-Birkhoff-Witt implies that,  for any m>0,  

the set 

{ xil . ..  ximUm- i g : 1<ii <. .. <im<d } 

is a K-basis of Um g/Um-i g recall the convention that the empty 

pro- duct,  in the case m=0,  is equal to the unit element.   
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This last corollary obviously remains true,  by choosing a total ordering 

of a K-basis of g,  even if g is not finite dimensional.  

Let t : gi —>g2 be a homomorphism of Lie algebras. Applying the 

universal property gives a homomorphism of K-algebras with unit 

U t : U gi — ► U g2 

g2 is commutative. We want to apply this in two specific situations. First 

let g1 and g2 two Lie algebras. Obviously,  g1 x g2 again is a Lie algebra 

with respect to the componentwise Lie product. There are the 

corresponding monomorphisms of Lie algebras 

Theorem. K-bilinear map 

U gi x U g2 — ► U gi x g2 

 a, b i — ^ U ii a  U i2 b.  

By the universal property of the tensor product it induces the map in the 

assertion as a K-linear map. The latter is bijective by a straightforward 

application. Since we have 

[ii x, i2 y]=[ ^ 0, y]= [x,  0],  [0, y]= 0, 0 

for any xgi and any yg2 it follows easily that U ii a and U i2 

b,  for any aU gi and any bU g2,  commute with one another. 

This implies that the asserted map is a homomorphism and hence an 

isomorphism of K-algebras with unit.   

We point out that under the isomorphism in the above Theorem the 

elements 

x C 11 C y<—> x,  y 

correspond to each other. Secondly,  for any Lie algebra g the diagonal 

map 

A : g — ► g x g 

x l —> x,  x 
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is a homomorphism of Lie algebras. We obtain the commutative diagram 

Ag 

g x g 

c 

U g x g 

U g U g. U A 

Definition. The composed map U g —>U g CK U g in the lower 

line of the above diagram is denoted by abuse of notation again by A 

and is known the diagonal or comultiplication of the algebra U g.  

We note that for xg C U g we have 

A x=x  11  x.  

11.7 THE CONCEPT OF FREE ALGEBRAS 

In this section K again is an arbitrary field. We will discuss the following 

problem. Let A be a specific class or category of K-algebras. We have 

in mind the following list of examples: 

ComK := all commutative and associative K-algebras with unit; 

AssK := all associative K-algebras with unit; 

LieK := all Lie algebras over K; 

- AlgK := all K-algebras,  i. . , all K-vector spaces A equipped with a 

K-bilinear "multiplication" map A x A —>A.  

We suppose given a finite set X=[X \,.. ., Xd },  and we ask for an 

algebra AX in the class A together with a map X —>AX which have the 

following universal property: For any map X —>A from the set X into 

any algebra A in the class A there is a unique homomorphism Ax — ► 

A of algebras in A such that the diagram 

U  g 
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is commutative. If it exists AX is known the free A-algebra on X.  

The case ComK: The polynomial ring Ax := K[Xi,. . ., Xd] over K in the 

variables X1,. .. , Xd has the requested universal property.  

The case Assk: As we have reknown in section 14 the tensor algebra 

Ax := Asx := T Kd 

of the standard K-vector space Kd together with the map 

X — ► Kd C T Kd 

Xi i —>i-th standard basis vector ei 

satisfies the requested universal property. It sometimes is useful to view 

Asx as the ring of all "noncommutative" polynomials 

P Xi,.. ., Xd= ^ 0 i1,. .. imXi1 . ..  Xim 

 i1,. . ., im 

with coefficients a i1t. ., im G K where the sum runs over finitely many 

tu- ples i1,. . ., im with entries from the set { 1,. . ., d } including 

possibly the empty tuple. The multiplication is determined by the rule 

that the variables commute with the coefficients but not with each other. 

The algebra Asx in a natural way is graded by As^n := Kd K. ..  K Kd n 

factors which means that 

Asx= ra>oAsXn with AsXX ' AsXm C AsX+m" for any l,  m>0.  

The case Algx: Here we have to preserve the information about the order 

in which the multiplications in a "monomial" Xi1 . ..  Xim are per- 

formed and we have to omit the unit element. This can be done in the 

following way. We inductively define sets X n for n>1 by X 1 := X 

and 

X n := disjoint union of all X p x X q for pq=n,  
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and we put 

Mx := disjoint union of all X n.  

The obvious inclusion maps X m x X n — Y X mn combine into a 

"multiplication" map 

px : Mx x Mx — ► Mx.  

We now form the K-algebra 

Ax := the K-vector space on the basis Mx 

in which the multiplication is given by the linear extension of the map 

px.  There are the obvious inclusions X C Mx C Ax.  

Let y : X —>A be any map into any K-algebra A. We inductively extend 

to a map : Mx —>A by 

Y : X n ^ X p x X q —>A 

 x, y 1 — ^ Y xY y.  

This extension by construction is multiplicative in the sense  

Mx x Mx ^ Mx X 

Ax x Ax • > Ax 

is commutative. Hence it further extends by linearity to a homomorphism 

of K-algebras 

Y : Ax — ► A.  

We stress that the algebra Ax is graded by 

Ax := the K -vector space on the basis X n,  

i. . , we have 

Ax=^hAx^ with Ax  A{ X c Aix+m for any l,  m>1.  

The case LieK: In AX we consider the two sided ideal JX which is 

generated by all expressions of the form 
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aa and abc bca cab for a, b, c G AX.  

Then 

Lx := Ax/Jx with [aJx,  bJx] := abJx 

is a Lie algebra over K.  

Let y : X — ► g be any map into any Lie algebra g over K. As discussed 

above it extends to a homomorphism of K-algebras : Ax — ► g. We 

obviously have 

Jx ^ ker .  

Hence there is a uniquely determined homomorphism of Lie algebras : 

LX —>g  

is commutative.  

Exercise. i. We have JX=nenJX n A^ and hence 

LX=^nL^ with [Lx, Lx^] ^ LX+m for any l, m>1 if we define L^ := 

/JXnAX i. . , the Lie algebra LX is graded.  

The set X is more precisely,  maps bijectively onto a K-basis of LX1.  

The set { [Xi, Xj] : i<j } is a K-basis of.  

The inclusion map X — X Asx extends uniquely to a homomorphism of 

Lie algebras 

: Lx — x Asx,  [, ]asx.  

By the universal property of the universal enveloping algebra this map 

further extends uniquely to a homomorphism of associative K-algebras 

with unit  : U Lx -x Asx.  

Check your Progress-3 

Discuss Universal Enveloping Algebra & Free Algebra 

11.8 LET US SUM UP 
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In this unit we have discussed the definition and example of Elementary 

Functions, An Auxiliary Function, Semi Simple Lie Groups, Lie Groups, 

The Universal Enveloping Algebra, The Concept Of Free Algebras 

11.9 KEYWORDS 

Elementary Functions 

An Auxiliary Function  

Semi Simple Lie Groups 

Lie Groups 

The Universal Enveloping Algebra 

The Concept Of Free Algebras 

11.10 QUESTIONS FOR REVIEW 

Explain Elementary Functions….. We consider the convergence of the 

exponential logarithmic and binominal series in this section 

Explain An Auxiliary Function …. Throughout our discussion Fq shall 

denote a finite field consisting of q elements 

Explain Semi Simple Lie Groups….. Let G be a semi simple Lie group 

worth a faithful representation. We state here two theorems the proof of 

which could be found . 

Explain Lie Groups…. A Lie group G over K is a manifold over K 

which also carries the structure of a group such that the multiplication 

map 

Explain The Universal Enveloping Algebra….. In this section K is 

allowed to be a completely arbitrary field . 

Explain The Concept Of Free Algebras….. In this section K again is an 

arbitrary field. We will discuss the following problem. Let A be a 

specific class or category of K-algebras 
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UNIT-12: THE CAMPBELL-

HAUSDORFF FORMULA   

STRUCTURE 

12.0 Objectives 

12.1 Introduction  

12.2 The Campbell-Hausdorff Formula 

12.3 The Convergence Of The Hausdorff Series 

12.4 Formal Group Laws 

12.5 Let Us Sum Up  

12.6 Keywords  

12.7 Questions For Review  

12.8 References 

12.9 Answers To Check Your Progress 

12.0 OBJECTIVES 

After studying this unit, you should be able to: 

 

 Understand about The Campbell-Hausdorff Formula 

 Understand about The Convergence Of The Hausdorff Series 

 Understand about Formal Group Laws 

12.1 INTRODUCTION 

In mathematics, p-adic analysis is a branch of number theory that deals 

with the mathematical analysis of the functions of p-adic numbers. 

The Campbell-Hausdorff Formula, The Convergence Of The Hausdorff 

Series, Formal Group Laws 
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12.2 THE CAMPBELL – HAUSDORFF 
FORMULA 

Again K is an arbitrary field and X={ X1, . .. ,  Xd } is a fixed finite set.  

We recall that the free associative K-algebra with unit AsX on X is 

graded: 

AsX=n>oAsX^ and AsX  AsXX Q AsX+m' for any l,  m>0.  

Therefore 

Asx := n AsX'1 n> 0 

with the multiplication 

nann  bnn := aibn — i\n i=0 

also is an associative K-algebra with unit containing AsX as a 

subalgebra.  It is known the Magnus algebra on X.  Similarly as for AsX 

it is useful to view Asx as the ring of all "noncommutative" formal power 

series over K in the variables X1, . .. ,  Xd.  In Asx we have the two sided 

maximal ideal 

mx := { nnAsx : ao=0 }.  

Theorem.  i.  AsX={ annAsX : a0=0 }. "t" x 

ii.  1mX is a subgroup of AsX.  

Proof.  i.  The map 

AsX — ^ K  ann 1 v a0 

is a homomorphism of K-algebras with unit.  The group of multiplicative 

units Asx therefore must be contained in the complement of the kernel of 

this map.  Vice versa let a= annAsx be an element such that a0=0.  

We have 

a=a0 • 1— u where u := 0,  -a-1 • ai, . .. ,  -a-1 • an+1, . .. .  

Since um{ 0 } x.. .  x { 0 } x n>m AsX the sum ^m>0 um is well 

defined in Asx.  For b := a-1 • ^2m>0 um we then obtain ab=ba=1.  
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ii.  This is obvious Note that 1mx is the kernel of the homomorphism of 

groups 

AsX — ► K x ann 1 ^ a0.  

In the last proof we have used a special case of the following general 

principle.  For each m>0 let u m{ 0 } x.. .  x { 0 } x n>m AsX be 

some 

element.  Then the sum ^m>0 u mAsx is well defined.  In particular,  

for any umx we have the well defined homomorphism of K-algebras 

with unit 

eu : K[[T]] — ^ Asx F T — ^ F u.  

Proposition If the field K has characteristic zero then the maps exp : mx 

—>1mx and log : 1mx —>mx 

u — •n 1u — ^— in+1 un n>0 n>1 

are well defined and inverse to each other.  

Proof. exp u=eu exp T and log 1u=e« log 1T the maps in the 

assertion are well defined.  Applying eu to the identities 

exp log 1T=1T and log exp T=T in the ring Q[[T]] shows that 

they are inverse to each other.   

Exercise.  If a,  bmx commute with each other multiplicatively then 

we have 

exp ab=exp a  exp b.  

we can view Lx as the Lie,   subalgebra of Asx "generated" by the 

elements X \,. .. ,  Xd.  Moreover,  we have 

Lx=Lx Lx2.. .  Asx=K AsX AsX.. .  

We now define 

Lx := ^ L^ C mx C Asx. n> 1 

Theorem.  LX is a Lie subalgebra of AsX.  
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Proof.  Let a= ann and b= bnn be any two elements of LX.  We have 

to show that ab— baLX holds true.  For any m>1 we put 

a m := 0,  ai, . .. ,  am,  0, . .. ,  v m := 0, . .. ,  0,  am+i,  am+2, . .. ,   

b m := 0,  bi, . .. ,  bm,  0, . .. ,  u m := 0, . .. ,  0,  bm+i,  bm+2, . .. .  

Then a m,  b mLX and hence a mb m— b ma mLX.  

Moreover 

ab— ba= a mv m b mu m— b mu m a mv m = 

a mb m— b ma m 0, . .. ,  0,  cm+i, . .. .  

It follows that for n<m we have 

n-th component of ab— ba=n-th component of a mb m— b ma 

mLln.  Since m was arbitrary we conclude that ab— baLX. 

   

Since U LX=AsX can view the comultiplication A of U Lx as a 

homomorphism of K-algebras with unit 

A : Asx — ► Asx Ask.  

It satisfies A Xj=Xj  11 Xj for any 1<i<d.  Since the Xi, . .. ,  Xd 

form a K-basis of AsX it follows that 

A AsXX C AsXi K AsX0AsX0 K AsXi 

and then inductively that 

A 4s<=> C  [,  4s™ AsX"] l+m=n 

for any n>0.  This makes it possible to extend A to the homomorphism of 

K-algebras with unit 

A : 4sx=n 4sXn —>4sx k4sx := n [4s{ X +k 4s^] 

n>0 l,  m>0 = n  [4sX K 4sX">] 

n>0 l+m=n  ann 1 4  yA ann.  

Theorem.  If the field K has characteristic zero then we have Lx={ 

a4sx : A a=a  11  a }.  
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Proof.  Let a= ann4sx be any element.  We have A a=a11  a if 

and only if A an=an +11  an for any n>0.  Latter is equivalent to 

an =L^ for any n>0 which exactly is the condition that 

aLx.    

Theorem.  Campbell-Hausdorff Suppose that K has characteristic zero; 

then the map 

exp : Lx — 4 { b1mx : A b=b <g> b } 

is a well defined bijection; moreover,  the right hand side is a subgroup 

of 1m x.  

Proof.  The second part of the assertion follows immediately from A 

being a ring homomorphism.  Since Lx C mx the map exp is defined on 

Lx and is injective.  For the subsequent computations we observe that the 

componentwise construction of the ring homomorphism A implies that A 

commutes with the maps exp and log.  First let aL x.  Then A a = a  

11  a,  and we compute 

A exp a=exp A a=exp a  11  a 

= exp a  1  exp 1a 

= exp a  1  1exp a 

= exp a exp a.  

This shows that exp a indeed lies in the target of the asserted map.  

Vice versa let b1mX such that A b=b 0 b.  We can define a := log 

bmX so that b=exp a.  We compute 

A a=A log b=log A b 

= log b 0 b=log b 0 1  1 0 b 

= log b 0 1log 1 0 b 

= log b 0 11 0 log b 

= a 0 11 0 a.  
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Hence implies that aLX.  We observe that the asserted map is 

surjective.   

Corollary.  Suppose that the field K has characteristic zero; then LX 

equipped with the multiplication 

a 0 b := log exp a  exp b 

is a group whose neutral element is the zero vector 0 and such that — a is 

the inverse of a.  

Proof.  Since exp 0=1 the neutral element for 0 must be the zero vector 

0.  Furthermore,  since a and — a commute with respect to the usual 

multi- plication in AsX we have exp a  exp — a=exp — a  exp 

a=exp 0=1.  Hence a 0 — a= — a 0 a=log 1 =0.   

Definition.  For the field K=Q and the two-element set { Y,  Z } we call 

H Y,  Z := Y 0 ZL{ Y,  Z } c as{ y,  z } the Hausdorff series in Y 

and Z.  

As alluded to earlier we should view H Y,  Z as a noncommutative 

formal power series in the variables Y,  Z with coefficients in the field Q.  

We have 

exp Y  exp Z=1W with W=^ Y+  ZS 

r+s>1 H Y,  Z —  -1 

-1m+i/^~^ y r ZM m m V / ^ r! s! / m>1 r+s>1 

-1m+1 TTY^.  Zfi 

/ / -* m / j H rg si! 

n>1 r+s=nm= 1 ri+.. . +rm =r i=1 

si+.. . +sm=s ri+si>1, . .. , rm+sm>1 

Here and in the following the product sign Hm=1 always has to be 

under- stood in such a way that the corresponding multiplications are 
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carried out in the order of the enumeration i— 1, . .. , m.  It is convenient 

to use the abbreviations 

Hrs : — V V T]Y^  ZSL 

r,  s Z_^ m Z_^ H ri! si! 

m= 1 ri+.. . +rm =r i= 1 

si.. . sm=s ri+si>1, . .. , rm+sm>1 

and 

Hn : — ^ ^ Hr,  s r+s=n 

We note that Hr,  s is a sum of noncommutative monomials of degree r in 

Y and s in Z.  As a sum of noncommutative monomials of total degree n 

the element Hn lies in As{ yZ }.  We have 

H— Hn or,  more formally,  H— Hnn.  n> 1 n 

From the theory we know that HnL{ Yz } for each n>1 but this is not 

visible from the above explicit formula.  

Examples.  H1, 0— Y,  H0,  1— Z,  and H1— YZ.  

Hr,  0— H0,  r— 0 for any r>2 observe,  for example,  that Hr,  0 is the 

term of degree r in log exp Y— Y.  

H2— H2,  0H11Ho,  2— H11— YZ - 1 YZZY— 1 [Y,  Z].  

If g is any Lie algebra over any K then the K-linear map 

ad z : g — ► g 

f 1 — ► ^ f],  

for any zg,  is a derivation in the sense that 

ad z [f,  y]=[ad z f,  y][f,  ad a y] for any f,  yg holds true.  

This is just a reformulation of the Jacobi identity in g.  

PropositionDynkin's formula For rs>1 we have 

Hr,  s=r+s K,  sKs 
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with H'r s defined as 

m — 1 <=Dm-1 IPdYP ◦ -sp,  ◦ -ppz 

m>1 ri+.. . +rm=r i=1 

si+.. . +sm_i =s — 1 ri+si>1, . .. , rm_i+sm_i>1 

and m — 1 

Hg :=00 Il^o ^ Y • 

m>1 ri+.. . +rm_i=r — 1 i=1 

si.. . +sm_i=s ri+si>1, . .. , rm_i +sm_i>1 

Remark.  Suppose that K has characteristic zero; then we have 

a 0 b=H a,  b for any a,  bLX • 

Proof.  The above explicit computations including Dynkin's formula 

were completely formal and therefore are valid for any a,  b instead of 

Y,  Z.  The expression H a,  b,  of course,  has to be calculated 

componentwise in AsX using the observation.  

The exploitation of these "universal" considerations is based upon the 

following technique.  For any finite dimensional K-vector space V let 

Map V x V; V := K-vector space of all maps f : V x V — ► V.  

We pick a K-basis e1, . .. ,  ed of V.  

Definition.  A map f : V x V —>V is known polynomial of degree r,  

s if there are homogeneous polynomials Pi X1, . .. ,  Xd,  Y1, . .. ,  

Yd over K of degree r in X1, . .. , Xd and degree s in Yi, . .. ,  Yd,  for 

1<i<d,  such that 

f 5^aiei,  ^kiei=^2 Pi ai, . .. , ad, bi, . . . , bdei for any ai,  bi G K.  

In Map V x V; V we have the vector subspace Pol V x V; V of all 

polynomial maps.  It decomposes into 

Pol V x V; V= „>o Pol„ V x V; V= „>o r+s=n Polr,  s V x V; V 



                                                                                            Notes 

125 

Notes Notes 
where Polr,  s V x V; V denotes the subspace of all polynomial maps of 

degree r,  s and Pol„ V x V; V := r+s=„ Polr,  s V x V; V is the 

subspace of all polynomial maps of total degree n.  

Theorem.  Given any f G Polr,  s V x V; V and gi G Pol1i,  mi V x V; 

V for i=1,  2 the map v,  w i — ► f gi v,  w,  g2 v,  w lies in 

Polrii+si2, rmi+sm2 V x V; V' 

Corollary.  The property of a map f : V x V —>V of being polynomial  

 of a certain degree does not depend on the choice of the K-basis of V.  

Suppose now that the vector space V is a Lie algebra g of finite 

dimension d := dimK g.  Then also the vector space Map g x g; g is a 

Lie algebra with respect to the Lie product 

[f,  g] hy := [f xy].  

Corollary Pol g x g; g is a Lie subalgebra of Map g x g; g; more 

precisely,   

We identify the two-element set { Y,  Z } with the subset of Pol g x g; 

g consisting of the two projection maps pr^ : g x g —>g by sending Y to 

pr1 and Z to pr2.  By the universal property of free Lie algebras this 

extends uniquely to a homomorphism of graded Lie algebras 

0 : L{ y,  z } — ► Pol g x g; g.  

It satisfies 

e [Y,  a] y,  z=[y, a y,  3] and 0 [Z,  a] y,  z=[z,  ^ a y,  3] 

for any aL{ Y,  Z }.  

We define 

Pow g x g; g := Poln g x g; gn>0 

as a K-vector space.  The elements of Pow g x g; g can be viewed if K 

is infinite,  and after the choice of a K-basis of g as d-tuples of usual 

formal power series in the variables Y1, . .. , Yd,  Z1, . .. ,  Zd with 
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coefficients in K.  As a consequence of the Lie product on Pol g x g; g 

extends by 

[ fnn, gnn] :=  [fl,  9m]n l+m=n 

to a Lie product on Pow g x g;g.  Being graded 0 extends to the K-

linear map 0 : L{ y,  z } — ► Pow g x g; g 

 fnn I ► 0 fnn.  

Using the trick obtain for any mN,  with the notations in this proof,  

that 

0 [a,  b]=0 [a m,  b m]=[0 a m,  0 b m] 

= [0 a,  0 b] mod ^ Poln g x g; gn>m 

for any a,  bL{ y,  z }.  Since m is arbitrary this means that 0 also is a 

homomorphism of Lie algebras.  

From now on we assume for the rest of this section that the field K has 

characteristic zero.  We put 

H := Hg := § HPow g x g; g.  

More precisely,  we have 

H=^ Hr,  s with Hr,  s := 9 Hr,  sPolr,  s g x g; g. r+s>1 

Using Dynkin's formula in Prop.  16. 7 implies that 

Hr,  s=r+s H'r>sH<=s 

With H 1,  0=pr1; H0,  1=pr2,  and 

H 1,  1 : g x g 

 y,  z 1 — ► 2 [y> 3] 2 

H a,  H b,  c=H H a,  b,  c,   H a,  0=H 0,  a=a,  and H a,  -a=0 

for any a,  b,  cL{ y,  z }.  In order to use this we reinterpret the 

evaluation of H in a and b in the following way.  
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Let a,  bL{ y,  z } be any two elements.  By the universal property of 

free Lie algebras there is a unique homomorphism of Lie algebras 

mapping Y to a and Z to b.  By construction it satisfies 

ea,  b LPz } C { 0 }x.. .  x{ 0 }x n 4n;z } 

for any m>1 and therefore extends,  by the observation before the K-

linear map 

ba,  b : L{ Y,  Z }  > L{ Y,  Z } 

 cnn 1 ' ^ ^ <=a,  b cn.  The same reasoning as for 0 shows that ea,  b 

in fact is a homomorphism of Lie algebras.  On the other hand of course,  

ea>b is the restriction of a corresponding unique homomorphism of 

associative K-algebras with unit 

<=a,  b : As{ Y,  Z }  ► As{ Y,  Z }.  

Viewing an element in As{ y,  z } as a noncommutative polynomial G 

Y,  Z it is clear that 

Ca,  b G=G a,  b 

holds true.  It follows that 

ba,  b H=^ €a,  b Hn=^ Hn a,  b=H a,  b.  

There is an analogous construction for the Lie algebra Pow g x g;g.  

Quite generally,  given any g1,  g2Map V x V; V there is the 

homomor- phism of Lie algebras in case V=g 

Map V x V; V — ► Map V x V; V 

f 1 — ► f gi,  g2 v,  w := f gi v,  w,  g2 v,  w.  

If g1,  g2Pol V x V; V then says that it restricts to 

Pol V x V; V — ► Pol V x V; V 

and satisfies 

f gi,  g2Polrni+sn2 V x V; V 
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if fPolr,  s V x V; V and giPoU, V x V; V.  

Hence for g \, g2 in 

Pow0 g x g; g := { 0 } x Poln g x g; g 

we obtain,  by the usual componentwise procedure,  a homomorphism of 

Lie algebras 

Pow g x g; g — ► Pow g x g; g f — ► f gi,  g2.  

Indeed,  this is just a reformulation of the fact that a formal power series 

without constant term can be inserted into any formal power series.  We 

note that pri gi,  g2=gi.  

As before let now a,  b G L[y,  z] be any two elements.  Then 0 a,  9 b 

lie in Pow0 g x g; g Hausdorff series H G L{ y,  z } and various choices 

for the elements a and b.  For a := Y and b :=— Y we have 0 a=pr1 and 

0 b= — pr1 and we obtain from that 

- H Y, — Y"^Hf pri,  — pri.  

Since H Y,  — Y=0 by the assertion i.  follows.  For a := Y and b := 0 

we similarly obtain 

Hi ^ H Y,  0 

H > tf pri,  0.  

Again we have H Y,  0=Y and hence H/ pr1,  0=pr1 which is the 

assertion ii.  The last assertion iii.  comes symmetrically from the choice 

a := 0 and b := Y.    

The discussion leading to the commutative can easily be generalized to 

the three-element set { U,  Y,  Z } and the Lie algebra 

Pow g x g x g; g 

of d-tuples of formal power series over K ind variables.  We leave the 

details to the reader.  This leads to the homomorphism of Lie algebras 

 : L{ u,  y,  z } — ► Pow g x g x g; g 
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which sends U,  Y,  and Z to pr1,  pr2,  and pr3,  respectively.  For any 

choice of elements a,  bL{ U,  Y,  Z } we obtain,  analogously the 

commutative - Y,  Z Ho,  i - 

L{ Y,  Z } ^ L{ U,  Y,  Z } 

Pow g x g; g ; ; 5- Pow g x g x g; g.  f 0 a,  0 b 

Theorem Suppose that K has characteristic zero; we then have 

# pri,  ld pr2,  pr3=!L lL pri,  pr2,  pr3.  

Proof.  Apply to the Hausdorff series HL{ Y,  Z } and the two choices 

a := U,  b := H Y,  Z and a := H U,  Y,  b := Z,  respectively 

12.3 THE CONVERGENCE OF THE 

HAUSDORFF SERIES 

We fix a Lie algebra g of finite dimension d over a field K of 

characteristic zero.  We also pick a K-basis\,. .. ,  ed of g.  

Definition.  The elements 7kjK,  for 1<i,  j,  k<d,  defined by the 

equations d[ei,  ej ]=Yij ek 

are known the structure constants of g with respect to the basis { ei 

}1<i<d.  If we define the Lie product [,  ]' on Kd by 

 23 \{ vi, . .. , Vd, Wi, . .. , Wd }'= ^2 Yij VWj,. .. ^7ij- nwj 

i,  j i,  j 

then the isomorphism g=Kd becomes an isomorphism of Lie algebras.  

Using this same isomorphism we also can view the element 

H=HgPow g x g; g 

as a d-tuple 

H Y,  Z := Hg Y,  Z= H i Y,  Z, . .. , H d Y,  Z 

of formal power series H i Y,  Z over K in the variables Y= Yi, . .. ,  

Yd and Z= Z1, . .. ,  Zd.  That 



Notes 

130 

H i Y,  Z=YiZi2 ^ YjkYjZk.. .. j,  k 

Theorem.  i.  H Y,  0=Y,  H 0,  Z=Z.  ii H Y,  -Y=0.  

iii.  H U,  H Y,  Z=H H U,  Y,  Z.  

From now on let K,  || be a nonarchimedean field of characteristic zero.  

Via the linear isomorphism g=Kd we can view g as a manifold over K  

but which structure does not depend on the choice of the basis.  

Let us suppose at this point that there is an> 0 such that 

H Y,  Z G F<= Kd x Kd; Kd and ||H| |< e 

 where Kd is equipped with the usual maximum norm.  We then 

consider the open submanifold 

G := B 0 C Kd=g.  

Obviously 

G x G<= G<= 

 g,  h i — ► gh := H g,  h 

is a well defined locally analytic map.   

gi0=0gi=gi,  gi -gi=0,  and gi g2gs= gig2g3 

for any gi,  g2,  g3 G C<=.   

Proposition.  C<= is a d-dimensional Lie group over K whose neutral 

element is the zero vector 0 and such that — g is the inverse of g G G<=.  

If two> e'>0 satisfy then G<= of course is an open subgroup G<=.  

Definition.  { G<= }<= is known the Campbell-Hausdorff Lie group 

germ of the Lie algebra g.  

What is the Lie algebra of G<= We have the "global" chart c := G<=,  C,  

Kd for the manifold G<= and correspondingly the locally analytic 

isomorphism 

rc : G<= x Kd — ^ T G<= 



                                                                                            Notes 

131 

Notes Notes 
 g,  v 1 ^ M] G Tg G<= 

as well as the linear isomorphism 

Can G<=,  Kd — ^ r G<=,  T G<= 

/ 1 ^ C/ g=Tc g,  f g=[c,  f g] G Tg G<=.  

we know that the Lie product of vector fields corresponds on the left 

hand side to the Lie product 

[fh Mg=Dg/i /2 g - Dgf2 /i g.  

On the other hand the Lie product on Lie G<==T0 G<= is induced via 

the inclusion 

To Ge -^ r G<=,  T Ge 

t 1 ► Ct g=T0 rg  t 

by the Lie product of vector fields.  By the construction of the tangent 

map T0 rg 

Proposition.  Lie G<==g as Lie algebras.  

Proof.  By the above discussion it suffice to show that 

[,  ]'=[,  ]" 

holds true.  To further compute the Lie product [,  ]" we start from the 

identity 

rg h=H h,  g.  

Since,  H does not contain monomials of degree 0,  s in  Y,  Z with 

s>2 we can write 

H i Y,  Z =ZiY,  P i,  j ZYjterms of degree>2 in Y.  

we deduce that 

D,  aH,  i Y,  g ^ t ^ 

Dor'g P — W — i t,  j=<P i. j gti,  j °Yj |y=o 
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and hence that 

fv g=D0 rg  v= Y vj P i, j g, . .. ,  Y vj P d. j g 

for any v= vi, . .. ,  vdKd.  To derive the function fv in 0 we must 

derive the P i. j Z in Z and subsequently set Z=0.  By can write 

p i. j Z =tij2<= YjfcZfcterms of degree>2 in Z 

where tij denotes the Kronecker symbol.  It follows that 

d^i. j Z=i y i SZk iz=0 2 'jk 

and hence that 

Dofv= 2jvji,  k 

And d d  

D0fv w= 2Yjkvjwk, . .. ,  21] Yjkvj wj 

j,  k= 1 j,  k= 1 = 1 [v,  w]' 

for any v= v1, . .. ,  vd,  w= w1, . .. ,  wd G Kd.  We conclude that [v,  

w]"=Dofv w - Dofw v=2[v,  w]' - 2[w,  v]'=[v,  w]'.  

Having observen the interesting consequences of a possible convergence 

of the Hausdorff series we now must address the main question of this 

section whether satisfying exists.  

Using the isomorphism g=Kd any element f G Pol g x g; g can be 

viewed as a d-tuple f of polynomials in the variables Y and Z and hence,   

in particular,  as an element f G F<= Kd x Kd; Kd for any> 0.  Since 

the polynomials in Hr,  s := Hr,  s are homogeneous of total degree rs 

we have 

|| H 11   11 H II er+s 

\\Hr,  s\ \ — ||Hr,  s||1e.  

Suppose that there is a 0<e0<1 such that 

\Hr,  s\1 <- r+s-1 for any rs>1.  
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It follows that for any 0 << e0 we have 

||Hr,  s| |= \Hr,  s\1er+s<||Hr,  s||1e0+s-1e <for any rs>1 

and 

lim ||Hrs| |< lim \Hrs\1er+s-1 

r+s^ro   —  r+s^ro   —  

= +lim |Hr,  s|ie0+s-1 %r+s-i 

r+s^TO 0< lim — r+s-i 

r+s^TO o 

As 

H=^ Hr,  s r+s>1 

we conclude that for any 0 << e0.  

The coefficients of the Hausdorff series H are explicitly known and their 

absolute values therefore can easily be estimated.  But in order to 

translate this knowledge into an estimate for the norms ||Hr,  s||i we need 

a particularly well behaved basis of the K-vector space L{ YZ }.  

The free K-algebra A{ Y,  z } by construction has the K-basis M{ y,  z } 

= Ura> 1{ Y,  Z } n.  For any x G M{ YZ } we let ex denote its image 

in the factor algebra L{ Y,  Z }.  These ex obviously generate L{ YZ } as 

a K-vector space.  Hence there exist subsets B C M{ Y,  Z } such that { 

ex }xeB is a K-basis of L{ y,  Z }.  In the following we have to make a 

particularly clever choice of such a subset B.  But first we note that also 

the free associative K-algebra with unit As{ Y,  Z } has an obvious K-

basis which is the set Mon{ YZ } of all noncommutative monomials in Y 

and Z.  All of this is valid over an arbitrary field K.  Since our K is 

nonarchimedean we can introduce the oK-submodules 

As{ Y,  Z } := ^ 0K^ 

^GMon { y,  z } 

of As{ y,  z } and 
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L{ "ya,  Z } := L{ y,  z } n As{ Y^,  Z } 

of L{ Y,  Z }.  

Proposition i.  K arbitrary There is a subset B C M{ YZ } such that we 

have 

{ ex }x€B is a K-basis of L{ Y,  z },   

{ Y,  Z } C B,  and 

for any x G B\{ Y,  Z } there are x',  x" G B with x=x'x" and,  in 

particular,  ex=[ex /,  ex« ].  

ii.  K nonarchimedean There is a subset B C M{ YZ } as in i.  and such 

that 

L{ Y,  z }=^ 0kex ' x€B 

We now define the constant e0 by 

|p|p-1- 1 if K is p-adic for some p,   

e-1 otherwise 

where 

e1 := max 1,  max 1yk|i,  j,  k 

We note that 0<e0<1.  The constant e1 has the property that l|[ /, 

g]||i<e1^/||1NgN1 for any f,  gPol g x g;g.  

Theorem.  Let { ex }xeB be any K-basis of L{ Y,  Z } then have 

N^ ex|1<en-1 for any xB n := B n { Y,  Z } n.  

Proof.  We proceed by induction with respect to n.  For x=Y we have d 

eY=pr1 and hence d eY= Y1, . .. ,  Yd so that Hd eY|1=1=e1.  The 

case x=Z is analogous.  Any xB n with n>2 can be written as 

x=x'x" with x'B l,  x"B m,  and lm=n.  

Since l,  m<n we can apply the induction hypothesis to x' and x'' and 

obtain 
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l|0 e* N1=ll^ [ex', ex" ]||1=P ex' ,  0 eT/' ]||1 

e1|^ ex/ N1 H0 ex" N1 e1e1-1em-1=ef-1.  

Proposition.  For any 0 << e0 we have HF  Kd x Kd; Kd and 

on n. u.  f or any 0<c<e0 we have hfKd v lTd\ 

IHL <.   

Proof.  As discussed it suffices to show that 

|Hr,  s|1 <- r+s-1 for any rs>1.  

We fix n := rs>1.  We also pick a basis { ex }xeB as  

Hr,  s— ^ ^ cxex.  Since Hr,  s G L{ Y,  z } we in fact have 

Hr,  s —  

where B n— B n { Y,  Z } n.  

then implies that 

llHVIi<max |cx|||0 ex||i<si-1 max |cx |.  

  xGB n   xGB n 

In order to estimate the |cx| we have to distinguish cases.  But we 

emphasize that this is a question solely about the Hausdorff series and 

not the Lie algebra g and therefore,  in principle,  can be treated over the 

field Q.  

Case 1: K is not p-adic for any p.  Since Q C K we can choose the basis 

already over the field Q.  Then all coefficients cx lie in Q.  we have 

|cx|— 0 or 1 and hence |Hr,  s|1<^n — 1— eo n-1.  

Case 2: K is p-adic for some p.  we have Qp C K and 

_ log |p| |a|— |a|- logP for any a G Qp.  

Hence we can assume without loss of generality that K,  ||— Qp,  ||p,   

and we choose B as in We want to show that 
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n — 1 

max |cx|p<pp — 1.  xGB n 

Since the left hand side is an integral power of p this amounts to showing 

that 

plCx G Zp : — 0qp for any x G B n where l is the unique integer such 

that 

i<1 <i+1.  

By our particular choice of the set B this is equivalent to 

plHr,  s G Ljyz } and hence to plHr,  s G A^^Z }.  The explicit form of 

the coefficients of Hr,  s then reduces us to showing that 

| mn dc.  |p<1,  or equivalently,  |^J|ri!si!|p>p — l 

whenever 1<m<n,  r1.. . rm=r,  s1.. . sm=s,  and risi>1.  But 

implies 

|m n ri!si!|p>p — p — 1 m — 1+ ri+S1-1+.. . rm+Sm-1

n — 1 = p — p — 1.  

Since the left hand side is an integral power of p it indeed must be>p — 

l.   

Check your Progress-1 

Discuss The Campbell-Hausdorff Formula & Convergence 

12.4 FORMAL GROUP LAWS 

Let K be any field of characteristic zero.  We fix a natural number d,  and 

let R := K[[Y1, . .. ,  Yd,  Z1, . .. ,  Zd]\ denote the ring of formal power 

series over K in the variables Y= Y1, . .. ,  Yd and Z= Z1, . .. ,  Zd.  

Definition.  A formal group law of dimension d over K is a d-tuple F =  

F1, . .. ,  Fd of power series FiR such that we have: 

F Y,  0=Y and F 0,  Z=Z,   
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F U,  F Y,  Z=F F U,  Y,  Z.  

We observe that the condition i implies that 

Fi Y,  Z=YiZiterms of degree>1 both in Y and Z.  

Hence the two sides in the condition ii are well defined.  

Examples.  1 Fi Y,  Z=YiZi.  

F Y,  Z=YZYZ for d=1.  

F := for a finite dimensional Lie algebra g over K  and some choice of 

K-basis of g.  

The last example has a converse.  Let F be any formal group law.  We 

have 

Fi Y,  Z=YiZi^ cjkYj Zkterms of degree>3.  

We define a bilinear map : Kd x Kd — ► Kd by 

bp vl, . .. , Vd, wl, . .. ,  Wd := ^ c1k vj wk, . .. ^ cdk vj wk,  

and we put 

[v,  w]f := v,  w— 6f w,  v for v,  wKd.  

Theorem [,  ]f satisfies the Jacobi identity.  

Proof.  We observe that [,  ]f is a Lie product on Kd.  In the case of the 

formal group law it follows from the that [,  ]h« coincides up to the 

isomorphism g=Kd with the Lie product on g.  

Next we discuss a observemingly very different construction of a formal 

group law from a finite dimensional Lie algebra g over K by using the 

universal enveloping algebra U g.  We have the following list of K-

linear maps: 

 multiplication m=mg : U g 0K U g —>U g,   

 unit= eg : K —>U g sending a to a  1,   

 comultiplication A=Ag : U g— — >U g x g=U g 0K U g,   
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 counit c=cs : U g=T g/J g -g °=K.  

Of course,  the maps m andsatisfy the axioms for a noncommutative 

associative K-algebra with unit,  and A and c are homomorphisms of K-

algebras with unit.  In addition,  the maps A and c have the following 

properties: 

 counit property c C id o A=id= id 0 c o A ; 

 coassociativity id 0 A o A= A 0 id o A ; 

 cocommutativity U gA U g 0K ^ g  x y^y X " U g 0K U g 

is commutative.  

They easily follow,  by applying the universal property of U g,  from 

the corresponding properties of the diagonal map A : g —>g x g.  We 

now consider the K-linear dual 

U g* :=HomK U g,  Ktogether with the K-linear map 

y : U g* Ok U g* — U [U g Ok U g]* --U U g*.  li O I2 1 — ► 

[x O y u li x  ^ y] 

Proposition. U g*,  y,  c is a commutative and associative K-algebra 

with unit.  

In order to determine the algebra U g* explicitly we pick an ordered 

K-basis e1, . .. , ed of g.  We know from the Poincare-Birkhoff- Witt 

theorem that the 

e« := On '.. .  ' OdT for a= «i, . .. ,  «dN 

form a K-basis of U g.  

Proposition The map 

U g* -U K[[Ui, . .. , Ud]] 

I -u Fe U :=l eaUa «end 

is an isomorphism of K-algebras with unit onto the ring of formal power 

series over K in the variables U={ Up.. . ,  Ud }.  
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Proof.  The fact that { ea }a is a K-basis of U g immediately implies 

that the asserted map is a K-linear isomorphism.  The unit element c of U 

g* is the projection map onto Ke0=K which is mapped to Fc=1.  For 

the multiplicativity we first recall that 

A e?=A efcm= efc O 11 O efcm 

m= EC?  ek O 1 1 O em-'0m-iek m="?ek O e?-i 

for any 1<k<d and any m>0.  By induction one deduces that  30 A 

ea =e^ O eY for any aNO f3+j=a 

holds true.  We now compute 

F^ <=1,  <=2{ lD =Kh,  h{ eaUa =^i  ^ A e«Ua 

= EE fi e« <2 e,  - US+1" 

a ^+7=a 

=  (^i e^ U ^  (^2 e7 UY 

= F,  1 UF,  2 U.  

  

By dualizing the multiplication map 

U g X g=U g U g — U U g we obtain a K-linear map 

U g* — -U U g x g*.  

Applying to both sides with e1,  0, . .. ,  ed,  0, 0,  e1, . .. ,  0,  

edas an ordered K-basis for g x g we can view the latter as a K-linear 

map 

K [[Ui, . .. , Ud ]] - — U K [[Y1, . .. , Yd,  ZiZd]]=R.  

We define F i := m* UiR and Fg := F i, . .. ,  F{ d.  

At this point we have to recall a few basic facts about formal power 

series rings.  First of all,  the formal power series ring K[[Ui, . .. ,  Ur]] 

has a unique maximal ideal mu which is the ideal generated by Ui, . .. , 
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Ur.  This is an immediate consequence of the fact that any formal power 

series F over K with F 0=0 is invertible.  

Definition.  i.  A commutative ring with unit is known local if it has a 

unique maximal ideal.  

ii.  A homomorphism of local rings is known local if it maps the 

maximal ideal into the maximal ideal.  

Consider two formal power series rings K[[U \,. .. ,  Ur]] and K[[Vi, . .. ,  

Vs]].  For any F= Fi, . .. ,  Fr G my x.. .  x my the map 

<=f : K [[Ui,. .. , Ur ]] K [[Vi, . .. ,  Vs ]] 

G - — ► G F := G Fi, . .. ,  Fr 

is a well-defined local homomorphism of local rings.  We have <=f 

Ui=Fi.  

Theorem Let: K[[Ui, . .. ,  Ur]] —>K[[Vi, . .. ,  VS]] be any 

homomorphism   of K-algebras with unit which is local; we then have 

<==<=f with Fi :=Ui.  

Proof.  Sinceis local we have Fi G my so that <=f is well defined.  

Both <= and <=f are homomorphisms of K-algebras with unit.  Hence 

the identities <= Ui=<=f Ui imply that 

<= G=<=f G for any polynomial G G K [Ui, . .. , Ur ].  

We now write an arbitrary formal power series G G K[[Ui, . .. ,  Ur]] as 

G=^ Gn n> 0 

where Gn is a homogeneous polynomial of degree n.  In particular,  Gn 

lies in mU.  Sinceis local we obtainGn G m^.  Therefore the 

element 

Y, Gn G K[[Vi, . .. , Vs]] n>0 

is well defined.  We have 

<= G — Gn =G0.. . <= Gk<= Gn— YYGn 
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= Y Gn— YGn 

G mV+i 

for any k>0.  Since P|k>0 mV+i={ 0 } we conclude that 

<= G=YGn.  

The same reasoning,  of course,  applies to ef• Hence 

e G =Gn=eF Gra=eF G 

TnJ— / J ^b'x^n Proposition i.  m* is a local homomorphism.  

ii.  m*=epe.  

is a formal group law.  

[,  ]pe coincides up to the isomorphism g=Kd given by the basis e \,. .. , 

ed with the Lie product on g..  FG is a formal group law.  

ii- [,  ]fg c coincides,  modulo the isomorphism Of1 : g=Te G Kd,   with 

the Lie product on g.  

Proof,  i.  Because of <^ () =0 we have 

FG c v,  0=v and FG,  c 0,  w=w for any v,  wB<= 0.  

Again using the identity theorem this translates into the identities of 

formal power series 

Fg, c Y,  0=Y and Fg,  c 0,  Z=Z.  

In particular,  the formation of 

Fg,  c U,  Fg,  c Y,  Z and Fg,  c Fg,  c U,  Y,  Z 

is well defined.  For sufficiently small d>0 these formations commute 

with the evaluation in any points u,  v,  wB 0.  But by the 

associativity of the multiplication in G we have 

FG,  c u,  FG,  c v,  w=FG,  c FG,  c u,  v,  w for any ^ F wBS 

0.  By a third application of Cor.  5. 8 this translates into the identity of 

formal power series 
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FGtM,  FGtC Y,  Z=FGtC FGtM,  Y,  Z.  

Theorem.  The Lie group G has a family { H\a\ }\a\ of open subgroups 

indexed by the sufficiently big |a||K| which forms a fundamental 

system of open neighbourhoods ofe G and such that each H|a| is 

isomorphic,  via <P> to* 0,  FG,  c- |a| 

Proof.  With> 0 as above we put e0 := ||FGC||<=,  and we choose any 

|a|>max 1,  -2 so that,  in particular,  ^ <).  We claim that 

||fg>cII^<H holds true.  Let FG,  c Y,  Z=YZ^ va,  gYaZ3 with va,  

gKd.  \a \, \3\>1 

We have |va,  3||<e0e-\a\-\3\ and hence 

IIZgJ I1I=max (Ia,  \aItjK ! |v„,  31  

max (-p-r,  max e0(t4-\a \\ 3\ 

H M,  \3\>i \-\-  

max(\ -\, eo("--2 

R.  

By possibly enlarging the lower bound for |a| we can make exactly the 

same 

argument for the power series expansion of the map g i —>g-1 on G in a 

Sufficiently small neighbourhood of <^ () =0.  The family 

H\a\ := T-1(B_x_(0 then has the required properties.   

\ \ M 

Corollary.  Every Lie group is paracompact.  

Proof.  We find an open subgroup H C G which as a manifold is 

isomorphic to a ball B- 0.  Any coset gH,  for gG,  then is 

isomorphic,   as a manifold,  to B- 0 as well.  By the ultrametric space 

B- 0 and therefore any coset gH is strictly paracompact.  As a disjoint 

union of cosets gH the Lie group G also is strictly paracompact.  

file:///C:/Users/Avi/Downloads/P%20Adic%20Analysis.docx%23bookmark340
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Remark.  If Ge is the Campbell-Hausdorff Lie group germ of a Lie 

algebra g then we have 

H0=F gs,  c for the chart c := Ge,  C,  Kd.  

In the present situation of a Lie group G and with the choice of the K-

basis of g which corresponds to the standard basis of Kd under the   

isomorphism 0-1 : g - —Kd we now have the three formal group laws 

H0,  F0,  and Fg,  c 

whose Lie products 

[,  }Hg=[,  }Fg=[,  }fg,  c 

coincide and coincide with the Lie product on g.  

In order to compare formal group laws we need the following concept.  

Definition.  Let F and F be formal group laws over K of dimension d and 

d',  respectively.  A formal homomorphism  : F —>F is a d!-tuple  = 1, . 

.. ,  d' of formal power series G K [[U1, . .. ,  Ud } } such that .  0=0 

and 

 F Y,  Z=F'  Y, Z.  

The formal group laws F and F are known isomorphic if d=d' and if there 

are formal homomorphisms  : F —>F and ' : F —>F such that  ' 

U=U= '  U.  

We write Hom F,  F' for the set of all formal homomorphisms  : F — > 

F',  and we consider the linear map 

Hom F,  F' — ► HomK Kd,  Kd' 

* /9 i U\:= \J t .. . _ dU3 |u=0 ' J 

Theorem.  The map Hom F,  F' -i HomK Kd,  [,  }f, Kd',  [,  }<= 

 i — ► is well defined and bijective; in particular,  the formal group 

laws F and F_ are isomorphic if and only if the corresponding Lie 

products [,  }f and [,  ]F' are isomorphic.  
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Corollary.  The three formal group laws H_g,  and FGc are mutually 

isomorphic.  

Proposition.  Let Gi and G2 be two Lie groups over K and let Ci =  Ui,  

^i,  Kdi,  for i=1,  2,  be a chart for Gi around the unit element eiGi 

such that ^i ei=0; for any formal homomorphism  : FGl C1 —>FG2 C2 

there is an> 0 such that FS Kdl; Kd2.  

Proof.  In a first step we consider the special case that Gi= K,  + is the 

additive group of the field K and the chart is ci= K,  id,  K.  The FG1,  

Cl = YZ.  We abbreviate d := d2 and F := Fg2 C2 • The formal 

homomorphism  is a d-tuple of formal power series in one variable U 

which satisfies 

 0=0 and  YZ=F  Y, F Z.  

Deriving the last identity with respect to Z and then setting Z equal to 

zero leads to dF 

F' U=^ F U,  0 • F' 0.  

We define 

dF G Y := ^ Y,  0 • F' 0 and obtain the system of differential 

equations 

F' U=G  U with0=0.  

We write 

G Y =Ya Ma • ' 0 with MaMdXd K 

And  U =Un ^ with Wn= Wn,  i, . .. ,  Wn,  dKd.  

Our system of differential equations now reads 

EUnwnr1 = (UmWrnrai •.. .  •  (Umwmrad Ma • ' 0 

n> 0 and m>i  

Wn+1 = n  M  S' 0 

a€n0 mi. i+.. . +md. ad =n i,  j 
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for n>0,  where the second summation runs over all \a\-tuples 

By comparing coefficients we obtain the equations 

 m1,  1,  ...,  m1,  ai,  m2,  1,  ...,  m2,  a2,  ...,  md,  1,  ...,  md,  ad 

of integers>1 whose sum is equal to n.  Since each mi 1i.  n!m — f is an 

integer it follows that 

||wn+1 II<max{ n\wmijA-\\Ma•f' 0|| : aN0,  mM.. -+md>ad=n } i,  

j 

< max{ n Ikmij||-||Ma||-||f' 0|| : aNd,  mM+.. . +md,  «d=n }.  

..  "m,  ;.  i,  j 

we have observen that 

l|F|| i<A 11 ia<M 

holds true for any sufficiently big \a\\K \.  This implies the existence 

of some \a\>1 such that 

\\Ma\I<\a\|a| for any aNd.  

We claim that 

||wn+1|<\a\n  || ' 0|r+1 for any n>0.  

The case n=0 is obvious form w1=f' 0.  We now proceed by induction 

with respect to n.  Since 1<mgj<n the induction hypothesis gives 

Ikmij iK^n--1 -||f' 

We deduce 

II IK, . ,  ||<\nj"-|a |.||<=' 0||' i,  j 

and therefore 

IK+1|<max \a\n-|a| - || ' 0||n - \a\H - ||f' 0||=\a\n - || ' 0||n+1 

Conclude that there are appropriate e0,  e1>0 such that ,  w.  — r ||<UUi" 

for any n>1.  n! 
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It follows thatG F K; Kd for any 0 <<- 1.  

We now consider the general case,  and we fix a K-basis y1, . .. ,  fdl of 

g1 where gi := Lie G^.  For any f G g1 we can apply to the 

homomorphism of Lie algebras and obtain a unique formal 

homomorphism 

 — x : F K,  +,  id*FG1,  c1 

such that 

 — X 0=O  1=0Ci1 f.  

We introduce the homomorphism of Lie algebras 

G := *Q2.  

The unicity implies in addition that we must have  — CT x U= — — 

x U.  

By the special case which we have treated already we find an> 0 such 

that 

 — x.  G F K; Kdl and — <T x.  G F K; Kd2 for any 1<i<d1.  

Hence,  for sufficiently small> 0,  the maps G1 

fi ai, . .. , adl :=^-l r1 UlU.. . ^-1 ^d ad1Kdl D Be 0 

f2 al, . .. , adl :=G2 l -LCT rl al^.. . ^G2 l ^CT rd  adl 

G2are well defined and locally analytic.  we observe that the tangent map 

at 0 of the upper map is equal to a1, . .. ,  adl i —>a1x1.. . adlXd1 

which is a bijection.  Hence by the upper map can be inverted as a locally 

analytic map in a sufficiently small open neighbourhood V1 C U1 of 

e1G1.  Because of the resulting composed locally analytic map f2 ◦ f-

1 : V1 — ► Be 0 — ► G2 has  as its power series expansion with 

respect to the charts <p1\V1 and <^2 around ^1 e1 =0.  

Check your Progress-2 

Discuss Formal Group Laws 
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__________________________________________________________

__________________________________________________________ 

12.5 LET US SUM UP 

In this unit we have discussed the definition and example of The 

Campbell-Hausdorff Formula, The Convergence Of The Hausdorff 

Series, Formal Group Laws 

12.6 KEYWORDS 

The Campbell-Hausdorff Formula….. K is an arbitrary field and X={ 

X1, . .. ,  Xd } is a fixed finite set 

The Convergence Of The Hausdorff Series ….. We fix a Lie algebra g of 

finite dimension d over a field K of characteristic zero.  We also pick a 

K-basis\,. .. ,  ed of g.  

Formal Group Laws ….. Let K be any field of characteristic zero.  We 

fix a natural number d,  and let R := K[[Y1, . .. ,  Yd,  Z1, . .. ,  Zd]\ 

denote the ring of formal power series over K in the variables Y= Y1, . 

.. ,  Yd and Z= Z1, . .. ,  Zd.  

12.7 QUESTIONS FOR REVIEW 

Explain The Campbell-Hausdorff Formula & Convergence 

Explain Formal Group Laws  

12.8 REFERENCES 

p-adic Numbers, p-adic Analysis, and Zeta-Functions, Neal Koblitz 

(1984, ISBN 978-0-387-96017-3) 

A Course in p-adic Analysis by Alain M Robert 

Analytic Elements in P-adic Analysis by Alain Escassut 
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12.9 ANSWERS TO CHECK YOUR 

PROGRESS 

The Campbell-Hausdorff Formula  answer for Check your Progress-1 

Q 

Convergence Formal Group Laws  answer for Check your Progress-2 

Q  
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UNIT-13: THE TOPOLOGY OF QP  

STRUCTURE 

13.0 Objectives 

13.1 Introduction  

13.2 The Topology Of Qp  

13.3 Topology Associated With Valuation 

13.4 Approximation Theorem 

13.5 Completion Of A Field With Valuation 

13.6 Infinite Series In A Complete Field 

13.7 Let Us Sum Up  

13.8 Keywords  

13.9 Questions For Review  

13.10 References 

13.11 Answers To Check Your Progress 

13.0 OBJECTIVES 

After studying this unit, you should be able to: 

 

 Understand about The Topology Of Qp  

 Understand about Topology Associated With Valuation 

 Understand about Approximation Theorem 

 Understand about Completion Of A Field With Valuation 

 Understand about Infinite Series In A Complete Field 

13.1 INTRODUCTION 

In mathematics, p-adic analysis is a branch of number theory that deals 

with the mathematical analysis of the functions of p-adic numbers. 
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The Topology Of Qp, Topology Associated With Valuation, 

Approximation Theorem, Completion Of A Field With Valuation, 

Infinite Series In A Complete Field 

13.2 THE TOPOLOGY OF QP 

We will now discuss continuous functions on Qp and related topics. We 

begin by introducing some basic topological notions. 

Let α ∈ Qp and δ > 0 be a real number. 

Definition :The open disc centred at α of radius δ is 

D (α; δ) = {γ ∈ Qp : |γ − α|p < δ}. 

 The closed disc centred at α of radius δ is 

D (α; δ) = {γ ∈ Qp : |γ − α|p ™ δ}. 

 Clearly 

D (α; δ) ⊆ D (α; δ). 

Such a notion is familiar in the real or complex numbers; however, here 

there is an odd twist. 

Proposition. Let β ∈ D (α; δ). Then 

D (β; δ) = D (α; δ) 

Hence every element of D (α; δ) is a centre. Similarly, if β
j
 ∈ D (α; δ), 

then 

D (βj; δ) = D (α; δ). 

Proof. This is a consequence of the fact that the p-adic norm is non-

Archimedean. Let γ ∈ D (α; δ); then 

|γ − β|p = |(γ − α) + (α − β)|p 

™ max{|γ − α|p, |α − β|p} 

< δ. 

Thus D (α; δ) ⊆ D (β; δ). Similarly we can show that D (β; δ) ⊆ D (α; δ) 

and therefore these two sets are equal. A similar argument deals with 

the case of closed discs. 

Let X ⊆ Qp (for example, X = Zp). 

Definition : The set 

DX (α; δ) = D (α; δ) ∩ X 
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is the open ball of radius δ in X centred at α. Similarly, 

DX (α; δ) = D (α; δ) ∩ X 

is the closed ball in X of radius δ centred at α. 

 

We will now define a continuous function. Let f: X —>Qp be a function.  

Definition :We say that f is continuous at α ∈ X if 

∀ε > 0∃δ > 0 such that γ ∈ DX (α; δ) =⇒ f (γ) ∈ D (f (α); ε) . 

If f is continuous at every point in X then we say that it is continuous on 

X. Example :Let f (x) = γ0 + γ1x + · · · + γdx
d
 with γk ∈ Qp be a 

polynomial function. Then as in real analysis,  this function is continuous 

at every point. To observe this,  we can either use the old proof with | |p 

in place of | |, or the following p-adic version. 

Let us show that f is continuous at α. Then 

|f (x) − f (α)|p = |x − α|p : 
1 2

1

1    · · ( · )d

n p

n n n

n x x   



    

If we also assume that |x|p < |α|p, then 

|f (x) − f (α)|p ™ |x − α|p max{ α
n−1

γn ……1 ™ n ™ d} 

 ™ |x − α|pB, 

say, for some suitably large B ∈ R (in fact it needs to be at least as big 

as all the numbers 1 1n TM TM

n with n d  )  

     0     ,    | |  pBut if and without loss of generality we can take     

δ = ε/B. If |x − α|p < δ, we now have 

|f (x) − f (α)|p < ε. 

Example. Let the power series anxn have radius of convergence r>0. 

Then the function f: D 0; r  —>Qp for which 

f x  = n= 1 

is continuous by a similar proof to the last one.  

It is also the case that sums and products of continuous functions are 

continuous as in real analysis.  
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What makes p-adic analysis radically different from real analysis is the 

existence of non-trivial locally constant functions which we now discuss. 

First recall the following from real analysis.  

Recollection Let f: a,  b —>R be a continuous function. Suppose that 

for every x a,  b there is a t>0 such that x -1,  x +1 C a,  b and f is 

constant on x -1,  x +1,  i.. ,  f is locally constant. Then f is constant 

on a,  b.  

We can think of a,  b as a disc of radius b - a/2 and centred at ab/2. 

This suggests the following definition in Qp.  

Definition. Let f: X —>Qp be a function where X C Qp. Then f is locally 

constant on X if for every aX,  there is a real number 5a>0 such that f 

is constant on the open disc Dx a; 5a. \t r\nx 

This remark implies that there are no interesting examples of locally 

constant functions on open intervals in R; however,  that is false in Qp.  

Example. Let X=Zp,  the p-adic integers. From Theorem 2. 29,  we know 

that for aZp,  there is a p-adic expansion 

a=aoai p + + a„pn + ,   

where anZ and 0 ^ an ^ p— 1. Consider the functions 

fn: Zp — t Zp; fn a=an,   

which are defined for all n ^ 0. We claim these are locally constant. To 

observe this,  notice that fn is unchanged if we replace a by any ft with 

|ft— a|p<1/pn; hence fn is locally constant.  

We can extend this example to functions fn: Qp — t Qp for nZ since 

for any aQp we have an expansion 

a=a-r p-r + + aoaip + + anpn +  

and we can set fn a=an in all cases; these are still locally constant 

functions on Qp. One important fact about such functions is that they are 

continuous.  
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Proposition. Let f: X — t Qp be locally constant on X. Then f is 

continuous on X.  

Proof. Given aX and> 0,  we take 5=5a and then f is constant on 

DX a; 5a.   

This result is also true in R. 

Example. Let us consider the set Y=D 0; 1 C Zp. Then we define the 

characteristic function of Y by 

f1 if aY,   

Xy: Zp t Qp; Xy a=\ ,  if aY.  

This is clearly locally constant on Zp since it is constant on each of the 

open discs D k; 1 with 0 ^ k ^ p— 1 and these exhaust the elements of 

Zp. This can be repeated for any such open ball D a; 5 with 5>0.  

Another example is provided by the TeichmUller functions. These will 

require some work to define. We will define a sequence of functions with 

the properties stated in the next result.  

Proposition. There is a unique sequence of locally constant,  hence 

continuous,  functions wn: Zp — t Qp,  satisfying 

 T1 wn ap=wn a for n ^ 0,  

 T2 a=^ Wn apn.  

Proof. First we define the TeichmUller character w: Zp — t Qp which 

will be equal to w0.  Let aZp; then the sequence apn is a sequence of 

p-adic integers and we claim it has a limit.  To observe this,  we will 

show that it is Cauchy and use the fact that Qp is complete 

has a unique p-adic expansion 

a=a0a1pa2p... with akZ and 0 ^ ak ^ p— 1. In particular,   

|a— ao|p<1.  

By Fermat's Little in Z we have a=ao,   
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hence |a0— a0 |p<1. Making use of the fact that inequality,  we obtain 

^ 1 together with the triangle 

|ap— a0lp= a— ao ap 1ap 2ao + + ap 

^ |a— ao|p<1.  

Thus we have  

|aP— a|P=| aP— ap ap— ao ao— a|^ max{ |ap— ap|p,  |ap— 

ao|p,  |ao— a|p }< 1.  

We will show by induction upon n ^ 0 that Clearly this is true for n=0 by 

the above. Suppose true for n. Then 

aPn+1=aPnp,   

where |P|p<1/pn. Raising to the power p gives 

apn+2= apnpp 

= apn+1papn p-1p...^ ^ apnk pp-k...pp,   

where all of the terms except the first in the last line have||p less than 

1/pn+1. Applying the p-adic norm gives the desired result for n1.  

Now consider apn. Then 

apn= apn— apn 1 apn 1— ap" 2... ap— aan- 1 

a^ apk+1— apk.  

Clearly the difference apn+1— apn is a null sequence & the sequence 

apn is Cauchy as desired.  

Now we define the Teichmuller function or character,   

w: Zp —>Qp; w a=lim pap".  

n^tt 

This function satisfies 

|a— w a|p<1,  w ap=w a.  
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The inequality follows while the equation follows from the fact that 

 lim pap^p=lim p apnp 

Vn^tt J n^tt 

= lim p apn+1.  

n^-tt 

We now set w0 a=w a and define the wn by recursion using 

fa - wo awi ap + + wn apn\ 

wn+i a=w ^ pn+i     

For aZp,  the expansion 

a=wo awi ap + + wnpn +  

is known the Teichmiiller expansion of a and the wn a are known the 

Teichmuller digits of a.  This expansion is often used in place of the 

other p-adic expansion. One reason is that the function w is 

multiplicative. We sum up the properties of w in the next proposition.  

Proposition. The function w: Zp —>Qp is locally constant and satisfies 

the conditions 

w aP=w aw P,   

|w ap - w a - w P|p<1.  

Moreover,  the image of this function consists of exactly p elements of 

Zp,  namely the p distinct roots of the polynomial Xp— X.  

Proof. The multiplicative part follows from the definition,  while the 

additive result is an easy exercise with the ultrametric inequality. For the 

image of w,  we remark that the distinct numbers in the list 0,  1,  2,  ..., 

p— 1 satisfy 

|r - s|p=1.  

If r=s,  then 
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|w r - w s|p=1 

Hence,  the image of the function w has at least p distinct elements,  all 

of which are roots in Qp of Xp - X. As Qp is a field,  there are not more 

than p of these roots. So this polynomial factors as 

Xp - X=X X - w 1 X - w 2 ... X - w p - 1 and the p roots are the 

only elements in the image of w.   

Example. For the prime p=2,  the roots of X2 - X are 0,  1. In fact,  the 

Teichmuller expansion is just the p-adic expansion.  

Example. For the prime p=3,  the roots of X3 - X are 0,  ±1. So we 

replace the use of 2 in the p-adic expansion by that of -1. Let us consider 

an example.  

Setting a=1/5,  we have 5=-1 and so w 5=-1 since 

|5 - -1|3<1- 

Hence w 1/5=-1 too,  so w0 1/5=-1. Now consider 

 1/5 - -1 =1=2 3 15 5,   

and notice that 2=-1,  hence w1 1/5=w 2/5=1. Next consider 

 2/5 - 1 -3 -1 

3=T5=T",   

giving w2 1/5=w — 1/5=1. Thus 

1= — 11  31  32••• 

5 

where we have stopped at the term in 32 and ignored terms of 3-norm 

less than 1/32.  

Example. If p=5,  there are three roots of X5— X in Z,  namely 0,  ±1 

and two more in Z5 but not in Z. On the other hand, Z/5x= 2 as a 

group. Thus,  we can take w 2=7 say,  to be generator of the group of 

5— 1=4-th roots of 1 in Z5. So the roots of X5— X in Z5 are 
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w 0=0,  w 1=1,  w 2=y,  w 3=y3,  w 4=y2.  

Suppose that we wish to find the Teichmuller expansion of 3 up to the 

term in 52. Then we first need to find an integer which approximates y to 

within a 5-norm of less than 1/52. So let us try to find an element of Z/53 

which agrees with 2 modulo 5 and is a root of X4=1. We can use 

Hensel's Theorem to do this.  

We have a root of X4— 1 modulo 5,  namely 2. Set f X=X4— 1 and 

note that f' X=4X3.  Now f' 2=4  8=2 and we can take u=3. Then 

x=2— 3f 2= — 43=7 is a root of f X 

5   5   25 

modulo 25. Repeating this we obtain 

7— 3f 7=7— 75= — 68=57 

which is a root of the polynomial modulo 125. We now proceed as 

before.  

This method always works and relies upon the same ideas as Hensel's 

Theorem.  

Theorem Hensel's Theorem. Let f XZp[X] be a polynomial and let 

aZp be a p-adic number for which 

|f a|p<1 |f' a|p=1.  

Define a sequence in Qp by setting a0=a and in general 

an+1=an— f' an-lf an.  

Then each an is in Zp and moreover 

|f an |p<pn.  

Hence the sequence an is Cauchy with respect to||p and 

f lim pan=0.  

n^^ 
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Proof. The proof is left to the reader who should look at the earlier 

version of Hensel's Theorem mentioned above. We remark that the 

definition of an+1 can be modified to 

an+i=an— f ' a-1f an.  

One reason for using only a rather than an is that it can reduce the 

amount of calculation needed when using this formula.  

Example. Let f X=Xp-1— 1. Then from our earlier discussion of u we 

know that there are p— 1 roots of 1 in Zp. Suppose that we have an a 

such that|a— 7\p<1 for one of these roots 7. By an easy norm calculation,  

\f a\p<1. So we can take the sequence defined which converges to a 

root of f X,  i.. ,  a p— 1-st root of 1 in Zp.  

We now prove another general fact about locally constant functions on 

Zp.  

Theorem. Let f: Zp —>Qp be locally constant. Then the image of f,   

im f=f Zp={ f a : aZp },   

is a finite set.  

Proof. For each aZp there is a real number 5a>0 for which f is 

constant on the open disc D a; 5a. We can assume without loss of 

generality that 

1 

nda 

5a= — —  

with da ^ 0 an integer. Now for each a there is an integer na such that 

|a— na\p <pda 

and so f na=f a.  we also have 

D a; 1/pda=D na; 1/pda.  

In fact we can assume that na satisfies 
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0 ^ na ^ pda+1— 1,   

since adding a multiple of pda+l to na does not change the open disc D 

na; 1/pda. Now 

Zp=|J D fc;1/pdk k=0 

and f is constant on each of these open discs. But also 

pd0l-1 

Zp=J D fc;1/pd^. k=0 

Now take d=max{ dk : 0 ^ k ^ pdo+1— 1 } 

and observe that for each k in the range 0 ^ k ^ pdo+1— 1,  f is locally 

constant on the disc D k;1/pdj. Hence 

Zp=J D k; 1/p^,  

where f is constant on each of these discs. Since there is only a finite 

number of these discs,  the image of f is the finite set 

f Zp={ f k : 0<k<pd— 1 }.    

A similar argument establishes a closely related result.  

Theorem The Compactness of Zp. Let A C Zp and for each aA let 

5a>0. If Z=U D a; 1/pSa,  

aG A then there is finite subset A C A such that 

Z=U D a;1/p*a. aGA' 

A similar result holds for each of the closed discs D fi; t where t fi 0 is 

a real number.  

We leave the proof as an exercise. In fact these two results are equivalent 

in the sense that each one implies the other.  

The next result is a direct consequence.  

Theorem The Sequential Compactness of Zp. Let an be a sequence in 

Zp. Then there is a convergent subsequence of an,  i.. ,  a sequence 
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fin where fin=as n with s : N —>N a strictly increasing sequence and 

which converges. A similar result holds for each of the closed discs D fi; 

t where t fi 0 is a real number.  

Proof. We have 

Zp=U D k; 1.  

Hence,  for one of the numbers 1 fi k fi p,  say al,  the disc D al;1 has 

anD al;1 for infinitely many values of n. Then 

D ai;1=U D k; 1/p 

and again for one of the numbers 1 fi k fi p2,  say a2,  we have anD 

a2; 1/p for infinitely many values of n. Continuing in this way we have 

a sequence of natural numbers an for which D an; 1/p"-1 contains am 

for infinitely many values of m. Moreover,  for each n,   

D an;1/p"-1 C D an;1/pn.  

Now for each n fi 1,  choose s n so that as nD an;1/pn-^. We can 

even assume that s n<s n1 for all n. Hence we have a subsequence 

fin with fin=as n which we must still show has limit. But notice that 

|fin+l - fin|p<pn,   

since both of these are in D an+l; 1/p". Hence the sequence fin is null 

and so it has a limit in Zp.    

Recall the notion of uniform continuity: 

Definition Let f: X — ^ Qp be a function. Then f is uniformly continuous 

on X if Ve>035>0 such that Va,  fiX,  with |a— fi|p <5 then |f a— f 

fi|p <.  

Clearly if f is uniformly continuous on X then it is continuous on X. In 

real or complex analysis,  a continuous function on a compact domain is 

uniformly continuous. This is true p-adically 

Theorem. Let t>0,  aQp and f: D a; t —>Qp be a continuous 

function. Then f is uniformly continuous.  
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Definition. Let f: X —>Qp be a function. Then f is bounded on X if 

3bR such that VxX,  |f x|p ^ b.  

Again we are familiar with the fact that a continuous function defined on 

a compact set is bounded.  

Theorem. Let f: D a; t —>Qp be a continuous function. Then f is 

bounded,  i.. ,  there is a bR such that for all aD a; t,  |f a|p ^ 

b.  

Again the proof is a modified version of that in classical analysis.  

Now let us consider the case of a continuous function f: Zp —>Qp.   Zp 

is compact,  so f is bounded. Then the set 

Bf={ bR : VaZp,  |f a|p<b } 

is non-empty. Clearly Bf C R+,  the set of non-negative real numbers. As 

Bf is bounded below by 0,  this set has an infimum,  inf Bf ^ 0. An easy 

argument now shows that 

sup{ |f a|p : aZp }=inf Bf.  

We will write bf for this common value.  

Theorem. Let f: Zp —>Qp be a continuous function. Then there is an 

aoZp such that bf=|f ao|p.  

Proof. For all aZp we have |f a|p ^ bf. By definition of supremum,  

we know that for any> 0,  there is a aZp such that 

|f a|p>bf -.  

For each n,  take an anZp such that 

|f an |p >bf- n 

and consider the sequence an in Zp there is a convergent subsequence  

^n= as n of an,  where we can assume that s n<s n1. Let 

a'=lim pas n. Then for each n we have 

bf >\f as n |p >bf - S n and so \f as n\ ^ bf as n ^ to. Since 
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f a'\p - \f as n\p<nlim \f a' - as n \„=0 

we have bf=|f a'|p.   

Definition. Let f: Zp —>Qp be continuous. The supremum seminorm of 

f is P Consider the set of all continuous functions Zp —>Qp,   

C Zp={ /: Zp —>Qp : / continuous }.  

This is a ring with the operations of pointwise addition and 

multiplication,  and with the constant functions 0,  1 as zero and unity. 

The function || ||p: C Zp —>R+ is in fact a non-Archimedean norm on 

C Zp.  

Theorem. C Zp is a ring with non-Archimedean seminorm || |p. 

Moreover,  C Zpis complete with respect to this seminorm.  

Now recall the notion of the Fourier expansion of a continuous function 

/: [a,  b] —>R; this is a convergent series of the form 

E°° / 2pix. 2nx 

an cos + sin  

V n n 

n=l N 

which converges uniformly to / x. In p-adic analysis there is an 

analogous expansion of a continuous function using the binomial 

coefficient functions 

n _ x\ _ x x - 1 ... x - n1 

Cn x— I I —  j .  

We recall that these are continuous functions Cn: Zp —>Qp which 

actually map Zp into itself 

Theorem. Let /C Zp. Then there is a unique null sequence an in Qp 

such that the series 

^ ^ anCn x 
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converges to / x for every xZp. Moreover,  this convergence is 

uniform in the sense that the sequence of functions 

n^ amCmC Zp 

is a Cauchy sequence converging to / with respect to|| p.  

The expansion in this result is known the Mahler expansion of / and the 

coefficients an are the Mahler coefficients of  /. We need to understand 

how to determine these coefficients.  Consider the following sequence of 

functions /[n]: Zp —>Qp: 

/ [0] x=/ x 

/ [1] x— / [0] x1 - / [0] x 

/ [2] x— / [1] x1 - / [1] x 

/ [n+1] x— /[n] x1 - / [n] x 

/[n] is known the n-th difference function of  /.  

Proposition. The Mahler coefficients are given by 

= f [n] 0 n>0.  

Proof.  Sketch Consider 

f 0=^ a„C„ 0 

Now by Pascal's Triangle,   

Cn x1 - Cn x=Cn- l x.  

Then 

f [1] x=f [0] x1 - f[0] x 

^]an+lCn x 

n=0 

and repeating this we obtain 

f [m+1] x=f [m] x1 - f [m] x 



Notes 

164 

^ ^ an+mCn x.  

n=0 

Thus we have the desired formula 

f [m] 0=am.  

The main part is concerned with proving that an ^ 0 and we will not give 

it here.  

The functions Cn have the property that 

IICnllp=1.  

To observe this,  note that if aZp,  we already have |Cn a|p ^ 1. 

Taking a=n,  we get Cn n=1,   and the result follows. Of course this 

means that the series ^ anCn a converges for all aZp if and only if an 

^ 0.  

Example. Consider the case of p=3 and the function f x=x3. Then 

So we have 

x3=C1 x3C2 x6C3 x.  

In fact,  for any polynomial function of degree d,  the Mahler expansion 

is trivial beyond the term in Cd.  

The following formula for these an can be proved by induction on n.  

n /x 

 4. 3 /M 0= -1k kf n - k.  

k=0 ^ ' 

Example. Take p=2 and the continuous function f: Z2 —>Q2 given by 

f n= -ln if nZ.  

Then 

and in general 
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f |0] 0=1,  f W 0=0,  f 131 0=-1,   f M 0= -1n  n= — 2n.  

Therefore 

f x =-2nCn x.  

n=0 

Of course,  this is just the binomial series for 1— 2x in Q2.  

The exponential and logarithmic series. In  

real and complex analysis the exponential  

and logarithmic power series  X n 

exp X=5 ib,  X n 

log X =-1"-13 

are of great importance. We can view each of these as having coefficients 

in Qp for any prime p.  The first issue is to determine the p-adic radius of 

convergence of each of these series. Further details on this material can 

be found in [5].  

the p-adic radii of convergence of the p-adic power series 

1   1n-1 

expp X =nX",  logp X=r L-n_X" 

n=0 n=1 

are p-1/ p-1 and 1 respectively.  

Theorem. There are p-adic continuous functions expp: D 0;p1/ p-1 —

>Qp and logp: D 1; 1/p —>Qp,  where for xD 0; p1/ p-1 and 

yD 1; 1/p,   

expp x= n,   

n=0 n! 

logp y= -1n-1 1 - yn n=1 
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Furthermore,  for x1,  x2D 0;p-1/ p-1 and y1,  y2D 1; 1,   

expp x1x2=expp x1 expp x2,   logp y1y2 =ogp y1logp y2.  

A useful variation on the exponential function is the Artin-Hasse 

exponential function,  given by a power series 

Ep X=^ 1 - Xn-^n/n,   

p\n 

where the product is taken over natural numbers n not divisible by p,  

and p is the Mobius function for which p 1=1 and if n>1,   

E P d=o.  

d|n 

For example,  for any prime q and r g 1,   

  — 1 if r=1,   

p qr=I ,   

I 0 if r>1.  

Using the Binomial Expansion,  it is easy to observe that Ep X is a 

power series whose coefficients lie in Zp C Qp,  hence its radius of 

convergence is at least 1.  

There is a factorisation 

exp X=n 1— Xn-^n/n,  ng 1 

and so the exactly the factors of exp X which do not involve powers of 

p in the denominators of coefficients of powers of X. Another useful 

formula is 

Ep X=exp Lp X,   

Where Lp X  =^ X p"  

Notice that if p is odd,  this is part of the series log X,  namely the 

terms involving exponents of X which are powers of p.  
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Summary. This ends our discussion of elementary p-adic analysis. We 

have not touched many important topics such as differentiability,  

integration and so on. For these discussion of p-adic integration,  T-

function and Z-function.  

The world of p-adic analysis is in many ways very similar to that of 

classical real analysis,  but it is also startlingly different. I hope you have 

enjoyed this sampler. We will now move on to consider something more 

like the complex numbers in the p-adic context.  

Check your Progress-1 

Discuss The Topology Of Qp 

13.3 TOPOLOGY ASSOCIATED WITH 

VALUATION 

Proposition. A ring A is a valuation ring if and only if the set of principle 

of A is totally ordered by inclusion.  

Proof. Let A be a valuation ring. Let Ax and Ay be two proper principle 

x ideals of A. Consider z=- belonging to K the quotient field of A.  

Since A is a valuation ring,  either z or z-1 belongs A. But this implies 

that either Ax c Ay or Ay d Ax.  

Therefore the set of principal ideals y 

is totally ordered conversely let x=where y and z belong to A and z 

x0,  be an element of K which is not in A. xA implies that y does not 

belong to Az. But the set of principle ideals of A is totally ordered,   

therefore we get Az c Ay implying z=ay for some a in A. But a=x-1,   

therefore A is a valuation ring.    

Corollary. A valuation ring is a local ring.  

If possible let M1M2 be two maximal ideals in a valuation ring A. 

M1M2 implies that there exists x1M1,  x1 & M2 and x2M2,   x2 

& Mi.  
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x1 & M2 Ax1 is not contained in M2 which implies that Ax1 is not 

contained in Ax1. Similarly x2 not belonging to M1 implies that Ax1. 

But this is impossible,  therefore M1=M2.  

Proposition. A ring A is a valuation ring if and only if A is the ring of a 

valuation of its quotient field K determined upto an equivalence.  

Proof. Let M be the unique maximal ideal of the valuation ring A and 

A*=A/M. For x,  y in K* we define x>y if and only if x belongs to Ay. It 

is easy to verify that this relation among the elements of K* induces a 

total order in the group K*/A* and the canonical homomorphism   K* 

onto K*/A* is a valuation of K for which the ring of integers is A. The 

ring of integers of a valuation is a valuation ring has already been 

proved.    

Let k be a fields. By kU m we mean the set of elements of k together 

with an element m. We extend the laws of k to not everywhere defined 

laws in k U m in this way 

ma=am=m for a in k* 

mx a=a Xm=mxm=m,  for a in k* 

0 x m and mm are not defined.  

Let K be a field with a valuation v and let k=O/ Y be the residual fields 

of v. Then the canonical homomorphism p of O onto k extended to K by 

setting p x=m for x not in O gives rise to a map of K onto k U m known 

a place of K.  

In general,  we define 

A place of a field K is a mapping p form K to k U m such that 

 i p ab=p ap b 

 ii P ab=p ap b 

for a,  b in K and whenever the right hand side is meaningful.  

It is easy to prove that O=p-1 K is a valuation ring with the maximal 

ideal Y=p-1 0.  
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Thus there exists a 1 -1 correspondence between the set of valuation 

rings and the set of inequivalent places of a field Two places p1 and p2 

of a field K carrying K into k U m and k U m respectively are said to be 

equivalent if there exists an isomorphism a of k onto k such that p2=a o 

p1,  with a m=m.  

Let K be a field with a valuation v. For any a>0 in rv consider the ideal 

Ia={ x|xK,  v x>a } 

Then there exists one and only topology on K for which 

Ia for different a in rv form a fundamental system for neighbourhoods of 

0.  

K is a topological group for addition.  

We observe immediately that the operation of multiplication in K is  

continuous in topology. Ia for any a>0 in rv is an open subgroup and 

hence a closed subgroup of K. Thus the residual field k is discrete for 10 

the quotient topology. The topology of K is discrete if and only if the 

valuation vis improper if rv={ o }. In particular K with a discrete and 

proper valuation is not discrete as a topological space. The topology of K 

is always Hausdorff,  because if x ± 0,  then x does note belong to Ia with 

a=v x,  therefore U Iaa>0= 0 which proves our assertion. aer v 

Remark. If v is not improper,  then the ideals I'a for a>o in rv also 

constitute a fundamental system of neighbourhoods of 0 for the topology 

of K. For,  I'a and for a>o Ia contains I'2a.  

Remark. Let A be a ring a with a decreasing filtration by ideals i..  

there exists a sequence Ann>0 of ideals such that An d An+1 and 

AnAm c Am+n. Then there exists one and only one topology for which 

A is an additive topological group and Ann>o constitute a fundamental 

system of neighbourhoods of 0. A is a topological ring this topology.  

Let M be any ideals of a ring A. Then A can be made into a topo- logical 

ring by taking An=Mn. We call the topology defined by M on A the M- 

adic topology. In particular the ring of integers of a field K which a real 
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valuation v has the M- adic topology for every M={ x/v x>a>0 } We 

shall speak of this topology of K as the M-adic topology.  

If the valuation v is discrete and normed. We can take a=1 and M=Y.  

Remark. If K is a field with a real valuation v,  then the Y-adic topology 

completely characterises the valuation upto a constant factor,   because x 

belongs to Y if and only if xn tends to zero as n tends to infinity.  

13.4 APPROXIMATION THEOREM 

For the sake of simplicity we confine ourselves in this section to real 

valuations though analogous results could be prove for any valuation. In 

this section we deal with the question whether there exists any connec- 

tion between various inequivalent valuations of a field. We first prove: 

Theorem. Let K be a field with two valuations v1 and v2. Then v1 and 

v2 are inequivalent if an only if O1,  the ring of integers of v1,  is not 

contained in O2,  the ring of integers of v2.  

Proof. If O1 c O2,  then K - O1 contains K - O2 implying Y2 c Y1 c O1 

c O2. Therefore Y2 is a prime ideal in O1. Assume Y2Y,  then there 

exists xin Y1 which does not belong to Y2. Since Y2 is an ideal in Of,  

there exists a>0 in rv1 such that Y2 contains Ia. Let v^x=S.   

Then for large enough q we have 

v1 xq=qv1 x=qS>a,   

which means that xq belongs to Y2,  but Y2is a prime ideal,  therefore x 

belongs to Y2. Hence our assumption is wrong.  

Therefore Y2=Y1 and v1 is equivalent to v2. The converse is obvious.  

Theorem. Let Kbe a field with v1, . . .,  v„ n>2 proper valuations such 

that vi is inequivalent to vj for i ± j. Then there exists an element z in K 

such that v1 z>0,  v2 z<0 and vi z0 for i=1,  2, . . .,  n.  

Proof. We shall prove the results by induction on n. When n=2,  v1 in- 

equivalent to v2implies that O1 is not contained in O2. Therefore there 
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exists x in O1 and not in O2. Moreover O2 not contained in O1 implies 

that Y1 is not contained in Y2.   

Therefore there exists y in Y1 and not in Y2. Then z=xy is the required 

element.  

When n>2. By induction there exists an element x in K such that v1 

x>0,  v2 x<0 and vi x0 for i=1,  2, . . .,  n- 1. If vn x0,  we have 

nothing to prove. If vn x=0,  we take an element y with vn y0.  Let 

z=yX,  s a positive integer. Then for sufficiently large s,  z fulfills the 

requirements of the Theorem.  

Theorem. Let K be a field with v1, . . .,  vr proper valuations such that vi 

is inequivalent to vj for ij. Let Kj be the field K with topology r 

defined by vi andp the canonical map from K ^ Kj=P i..  p a =i=1 

 a,  a, . . .,  a. Thenp K=D is dense in P.  

Equivalently stated if a1, . .. ,  ar are any r elements in K,  then for every 

a1, . . .,  ar in R there exists an element x in K such that 13 

v x - aj>ai for i=1,  2, . . .,  r.  

Proof. The theorem is trivial for r=1. Let us assume that it is true in case 

the number of valuations is less then r.    

By there exists an elements x in K such that v1 x>xn 

0,  vr{ x<0 and Vj x ^ 0 for 1<i<r,  then yn=tends to 10 in K1,   

to 1 in Kr and to 0 or 1 in others as n tends to infinity. Let the notation be 

so chosen that p yn— 0,  0, . . .,  0,  1, . . .,  1 as n tends to infinity,  0 

occurring in 5 places where 1<5<r - 1. Now D is a subspace of P over K,  

therefore lt Xp jn=lt p xyn= 0, . .. 0,  X, . .. ,  X n — n — r 

and 0,  0, . . .,  0,  x,  x, . . .,  x is in D. Consider the product ]~I K,  by 

i=5+1  r induction assumption the diagonal of n K which is imbedded in 

D is 
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i=5+1 dense in the product which implies that 0, . . .,  0,  a5+1, . . .,  ar 

belongs to D for ai in K,  51<i<r. Similarly a1,  a2, . . .,  a5,  0, . . .,  0 

belongs to D. But D is a vector space over K,  therefore a1,  a2, . . .,  ar 

is in D.  

Hence n K=D. i=1 

Corollary. Under the assumptions of the theorem for ajrvj j = 1,  2, . . 

.,  r there exists x in K such that vj x=a j.  

For aj in rvj,  there exists ajK such that v aj=aj. By approximation  

theorem there exists an element x in K such that v x - aj>aj.  By 

definition we have v x=v x - ajaj=inf v x - aj,  v aj = v aj=aj.  

13.5 COMPLETION OF A FIELD WITH 

VALUATION 

Let K be a field with a valuation v. Since K is a commutative topological 

group for the topology defined by v,  it is a uniform space. Let K denote 

the completion K. The composition laws of addition and multiplication 

can be extended by continuity to K,  for which K is a topological ring.  In 

fact K is a topological field,  because if O is a Cauchy filter on K 

converging to a0,  then O-1 the image of O by the map x— x-1 in K is 

a Cauchy filter. For O not converging to 0 implies that there exists a>0 in 

rv and a set A in O such that v x<a for every x in A. Since O is a 

Cauchy filter,  for every jd in rv,  there exists a set B in O contained in A 

such that 

v x - y>2af3 for x,  y in B.  

Then v x-1 - y-1=v x-1y-1 y- x=-v x - v yv y- x>-a - a2 a 

+13 

which implies that O-1 is a Cauchy filter converging to a-1 in K. The 

valuation v can also be extended to be valuation v of K,  in fact it is a 

continuous representation of K* onto rv considered as a discrete topo- 

logical group,  so v can be extended as a continuous representation v of 

K* in r and we get v xy>inf v x,  v y by continuity. Moreover 15 



                                                                                            Notes 

173 

Notes Notes 
Ok the ring of integers of K=Ok=Ok,  since Ok is open in K and_K is 

hence in K,  Ok n K=Ok is dense in Oy,  this implies that Ok ^ Ok.  But 

Ok ^ Ok,  therefore our result is proved. More generally 

4=|x|v x>a,  x= Ia=|x|v x>a,  xKj 

In particular Yk=YK. We have YK=Ok n Yy,  so we can identify Ok/yk 

with a subset of Oyly,  and Ok/yk is dense in Oy/y^- But Orl% is 

discrete,  therefore Or / Yy=Ok l yk.  

Remark. Let Kbe a field with a real valuation v,  with v we associate a 

map from K to R. We defined for any x in K the absolute value|x| = a-v 

x,  where a is a real number>1. The map || satisfies the following 

properties 

| x=0 if and only if x=0 

|xy|=| x |y| |xy<sup | x |,  |y|<|x||y |.  

The absolute value of elements of K,  which defines the same topol- ogy 

on K as the valuation v.  

By Qp we shall always denote the completions of the field Q for p-adic 

valuation and by Zp the ring of integers in Qp. For the absolute  value 

associated to the p-adic valuation. We take a=p so that |x|p = p-vp x 

13.6 INFINITE SERIES IN A COMPLETE 

FIELD 

Let K be a complete field for a real valuation v. Since every Cauchy 

sequence in K has a limit in K,  the definition of convergence of infinite 

series and Cauchy criterium can be given in the same way as in the case 

of real numbers. However in this case we have the following.  

Theorem. A family uiej of an infinite number of elements of K is 

summable if and only if u tends to 0 following the filter of the comple- 

ments of finite subsets of I.  

Proof. The condition is clearly necessary. Conversely for any a in rv we 

can find a finite subset J of I such that for i not in J,  v ui>a,   
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then for i1, . . .,  ir not in J we have ijt1u« >a which is nothing but 

Cauchy Criterium. Hence the family is summable.    

Corollary. Let Y un be infinite series of elements of K Then the 

following conditions are equivalent.  

un is convergent.  

un is commutatively convergent. un tends to 0 as n tends to infinity.  

Application. Let K be a complete field for a normed discrete real 

valuation v,  n a uniformising parameter for K,  R a fixed system of 

representatives in O for the elements of the residual field K. Then  the 

series Y rqnq,  where rq belongs to R is convergent to an element x in K 

and q= m 

Conversely every x in K can be represented in this form in one and only 

one way. The series is convergent because v rqnq>q for q ± 0 and 

therefore tends to infinity as q tends to infinity. Conversely by multiply- 

ing with a suitable power of n we can take x in O,  then there exists a 

unique r0R such that x=r0 mod Y.  

This implies that x - r0n 1 is in O. Therefore there exists unique r1 in R 

such that 

 x - x0n-1=r1 mod Y.  or x=r0r1n mod Y2.  

Proceeding in this way we prove by induction that 

x=rorm•••rmnm mod Ym+1 

TO 

Now it is obvious that the seriesrmnm,  is convergent and that x = r=0 

TO 

X rqnq. The uniqueness of the series is obvious from the construction.  

q=0 

In particular if,  K=Qp then any x in Qp can be represented in the 
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TO 

form X rqpq,  where rq{ 0,  1,  2.. .,  p - 1 }. q=m 

Check your Progress-2 

Discuss Topology Associated With Valuation 

13.7 LET US SUM UP 

In this unit we have discussed the definition and example of The 

Topology Of Qp, Topology Associated With Valuation, Approximation 

Theorem, Completion Of A Field With Valuation, Infinite Series In A 

Complete Field 

13.8 KEYWORDS 

The Topology Of Qp…. We will now discuss continuous functions on 

Qp and related topics. We begin by introducing some basic topological 

notions . 

Topology Associated With Valuation…. A ring A is a valuation ring if 

and only if the set of principle of A is totally ordered by inclusion.  

Approximation Theorem…. For the sake of simplicity we confine 

ourselves in this section to real valuations though analogous results could 

be prove for any valuation . 

Completion Of A Field With Valuation….. Let K be a field with a 

valuation v. Since K is a commutative topological group for the topology 

defined by v,  it is a uniform space 

Infinite Series In A Complete Field….. Let K be a complete field for a 

real valuation v. Since every Cauchy sequence in K has a limit in K   

13.9 QUESTIONS FOR REVIEW 

Explain The Topology Of Qp  

Explain Topology Associated With Valuation 
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13.11 ANSWERS TO CHECK YOUR 

PROGRESS 

The Topology Of Qp  answer for Check your Progress-1 Q 

Topology Associated With Valuation answer for Check your Progress-2 
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UNIT-14 : P-ADIC ALGEBRAIC 

NUMBER THEORY  

STRUCTURE 

14.0 Objectives 

14.1 Introduction  

14.2 P-Adic Algebraic Number Theory 

14.3 First Introduction To P-Adic Numbers 

14.4 P-Adic Numbers 

14.5 Visualization Of P-Adic Numbers 

14.6 Calculating With P-Adic Numbers 

14.7 An Algebraic Construction Of The P-Adic Numbers 

14.8 Quadratic Residues In P-Adic Numbers  

14.9 Roots Of Unity 

14.10 Let Us Sum Up  

14.11 Keywords  

14.12 Questions For Review  

14.13 References 

14.14 Answers To Check Your Progress 

14.0 OBJECTIVES 

After studying this unit, you should be able to: 

 

 Understand about P-Adic Algebraic Number Theory 

 Understand about First Introduction To P-Adic Numbers 

 Understand about P-Adic Numbers 
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 Understand about Visualization Of P-Adic Numbers 

 Understand about Calculating With P-Adic Numbers 

 Understand about An Algebraic Construction Of The P-Adic 

Numbers 

 Understand about Quadratic Residues In P-Adic 

Numbers  

 Learn, Understand about Roots Of Unity 

14.1 INTRODUCTION 

In mathematics, p-adic analysis is a branch of number theory that deals 

with the mathematical analysis of the functions of p-adic numbers. 

P-Adic Algebraic Number Theory, First Introduction To P-Adic 

Numbers,  P-Adic Numbers, Visualization Of P-Adic Numbers, 

Calculating With P-Adic Numbers, An Algebraic Construction Of The P-

Adic Numbers, Quadratic Residues In P-Adic Numbers, Roots Of Unity 

 

14.2 P-ADIC ALGEBRAIC NUMBER 

THEORY  

In this section we will discuss a complete normed field Cp, which 

contains Qp as a subfield and has the property that every polynomial f 

XCp[X] has a root in Cp; furthermore the norm||p restricts to the 

usual norm on Qp and is non-Archimedean. In fact,  Cp is the smallest 

such normed field,  in the sense that any other one with these properties 

contains Cp as a subfield.  We begin by considering roots of polynomials 

over Qp.  

Let f XQp[X].  Then in general f need not have any roots in Qp.  

Example.  For a prime p,  consider the polynomial X2— p.  If aQp 

were a root then we would have a2=p and so |a|p2=1/p.  But we know 
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that the norm of a p-adic number has to have the form 1/pk with kZ,  

so since |a|p=p-1/2 this would give a contradiction.  

Theorem.  There exists afield Q^lg containing Qp as a subfield and 

having the following properties: 

every aQ^lg is algebraic over Qp; 

every polynomial f XQ^lg [X] has a root in Qplg.  

Moreover,  the norm||p on Qp extends to a unique non-Archimedean 

norm N on Q^lg satisfying 

N a=|a|p 

whenever aQp.  This extension is given by 

N a=| minQp, a 0|p1/d where d=degQp a=degminQp, a X is the 

degree of the minimal polynomial of a over Qp.  

The minimal polynomial minQp, a X of a over Qp is the monic 

polynomial in Qp[X] of smallest positive degree having a as a root and is 

always irreducible.  We will denote by||p the norm on Qplg given in  

|a|p=|minQp, a 0|p1/d.  

Let us look at some elements of Qplg.  Many examples can be found 

using the next two results.  

Theorem.  Let r=a/b be a positive rational number where a,  b are 

coprime.  Then the polynomial Xb— paQp[X] is irreducible over Qp 

and each of its roots aQ^lg has norm |a|p=p-a/b.  

Corollary.  If r=a/b is not an integer,  then none of the roots of Xb— pa 

in Q^lg are in Qp.   

Proof.  We have \a\p=p a/b which is not an integral power of p.  But we 

know that all elements of Qp have norms which are integral powers of p,  

hence a </ Qp.   

The Eisenstein test of the next result provides an important criterion for 

finding irreducible polynomials over Qp.  
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Theorem The Eisenstein test.  Suppose that the polynomial 

f X=Xdad-iXd-1...aiXaoZp[X] 

satisfies the conditions 

\ak\p<1 for each k in the range 0 ^ k ^ d— 1,  

\ao\p=1/p.  

Then f X is irreducible over Qp.  

Example.  Consider the polynomial 

f1 X=Xp-iXp-2...X1.  

Notice that 

Xp— 1= X— 1fi X 

and so f1 X is the polynomial whose roots are all the primitive p-th 

roots of 1.  Now consider the polynomial g1 X=f1 X1.  Then 

Xgi X= X1p— 1=x p+<= pyk 

and so 

g1 X= Xp-1pT pxk-1.  

k= 1 X ' 

Each of the binomial coefficients ^p^ for 1 ^ k ^ p— 1 is divisible by p; 

also ^p^=p,  hence it is not divisible by p2.  By the Eisenstein test,  g1 

X is irreducible over Qp and an easy argument also shows that f1 X is 

irreducible.  Thus the primitive roots of 1 in are roots of the irreducible 

polynomial f1 X and have degree p— 1 over Qp.  If Zp is a root of f1 

X,  then \Zp\p=1.  The remaining roots are of the form p with 1 ^ r ^ 

p— 1.  

The roots of g1 X have the form p— 1 for 1 ^ r ^ p— 1 and g1 0=p,  

so 

Icp— 1|p=p-1/ p-1.  
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Theorem.  Let d ^ 1.  Then the polynomial 

fd X=f1 Xpd-1 

is irreducible over Qp and its roots are the primitive p -th roots of 1 in 

Qp.  If pd is such a primitive root,  any other has the form Zpd where 1 ^ 

k ^ pd— 1 and k is not divisible by p.  Moreover,  we have 

I Zpd I=1,  

|Zpd— l|p=p-<P-"pd-1.  

Proof.  This is proved by applying the Eisenstein test to the polynomial 

gd X =fd X1,  

which satisfies the conditions required and has gd 0=p.   

Corollary.  If p is an odd prime,  then 1 is the only p-th power root of 1 in 

Qp.  If p=2,  the only square roots of 1 in Q2 are ±1.  

What about other roots of 1? We already know that there all the p— 1-

st roots of 1 are in Qp; let us consider the d-th roots of 1 for any d> 1 not 

divisible by p.  We begin by considering the case where d has the form 

d=pr— 1.  

Proposition.  For each r ^ 1,  a primitive pr— 1-st root of 1, say,  has 

degree r over Qp and has minimal polynomial 

minQP, c x= n x — zpt- 

0ytgr-1 

Moreover,  || p= | — 1|p=1.  

Now suppose that d is any natural number not divisible by p andis any 

d-th root of 1.  Then for some m we have 

pm=1; 

we denote the smallest such m greater than 0 by md.  Then for any 

primitive pmd— 1-th root of 1,  Zpmd -i say,  we can take 

<==z t pmd-i/md <==Zpmd-i,  
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where t is an integer coprime to pmd— 1/md.  This uses the fact that 

the group of roots of Xn— 1 in Qplg is always cyclic by a result from the 

basic theory of fields.  From this it is possible to deduce 

Proposition.  Let d>0 be a natural number not divisible by p.  Then any 

primitive d-th root of 1,  <=,  has degree over Qp dividing md.  

Furthermore,  

 || p=1,  ^— Mp=1- Corollary 5. 11.  <=Qp if and only if md=1.  

Theorem.  Let <=Qplg be a primitive d-th root of 1.  Let d=d0pf 

where d0 is not divisible by p.  Then <=Qp if and only if one of the 

following conditions holds: 

• p is odd,  t=0 and md=1,  

• p=2 and d=2.  

Definition.  Let aQplg.  Then a is ramified if |a|p is not an integral 

power of p,  otherwise it is unramified.  Leta be the smallest positive 

natural number such that ae a is unramified; thena is known the 

ramification degree of a.  

Example.  Let n be a square root of p.  Earlier we saw that |n|p=p-1/2,  

hence n is ramified.  In fact we havea=2.  

This example generalises in an obvious way to roots of the polynomials 

Xb— pa  

Now we can consider Qplg together with the norm||p in the light of.  It is 

reasonable to ask if every Cauchy sequence in Qplg has a limit with 

respect to||p.  

Proposition.  There are Cauchy sequences in Q^lg with respect to||p 

which do not have limits.  Hence,  Q^lg is not complete with respect to 

the norm||p.  

We can form the completion of Qplg and its associated norm which are 

denoted 

Cp=Q?g, , , !!„.  
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Proposition.  If 0=aCp,  then 

|a|p=p' where tQ.  

Proof.  We know this is true for aQpg.  if 

a=lim pan 

with anQpg,  then for sufficiently large n,  

|a|p=|an|p.    

Next we can reasonably ask whether an analogue of the Fundamental 

Theorem of Algebra holds in Cp.  

Theorem.  Cp is algebraically closed in the sense that every non-zero 

polynomial f XCp[X] has a root in Cp.  By construction,  Cp is 

complete with respect to the norm||p.  

Again,  Of course we have now obtained a complete normed field 

containing Qp which is algebraically closed and this is the p-adic 

analogue of the complex numbers.  It is helpful to compare the chains of 

fields 

Q C R C C,  Q C Qp C Qalg c Cp,  

which are the sequences of fields we need to construct in order to reach 

the fields C and Cp in the real and p-adic worlds.  This field Cp is the 

home of p-adic analysis proper and plays an important role in Number 

Theory and increasingly in other parts of Mathematics.  We will confine 

ourselves to a few simple observations on Cp.   

Consider a power series anxn where an G Cp.  Then we can define the 

radius of convergence exactly as in Chapter 3,  using the formula 

r =limsup K|p1/n 

Proposition.  The series anxn converges if \x\p<r and diverges if \x\p>r,  

where r is the radius of convergence.  If for some x0 with \x0\p=r the 

series anx converges or diverges thenYl anxn converges or diverges 

for all x with \x\p=r.  
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Example.  Consider the logarithmic series 1 - xn 

logp x= — 5 

n= 1 

We showed that the radius of convergence is 1 for this example.  

Consider what happens when x=Zp,  a primitive root of 1 as above.  

Then \ZP— 1\p=p1/ p-1,  so logp ZP is defined.  Now by the 

multiplicative formula for this series,  

logp Cpp=P logp Cp^ 

and hence 

P logp Cp=logp 1=o.  

Thus logp Zp=0.  Similarly,  for any primitive pn-th root of 1,  Zpn say,  

we have that logp Zpn is defined and is o.  

Example.  Consider the exponential series 

OO n 

expp x=5 n.  n=0 ' 

the radius of convergence was shown to be p-1/ p-1.  Suppose a G Cp 

with \a\p=p-1/ p-1.  Then 

n= pordp n/ p-1n! 

By considering the terms of the form apn/ pn!,  we obtain 

v -. n= pn/ p-1= P-1/ p-1 

which diverges to as n ^ rc>.  So the series ^ an/n! diverges whenever\a 

\p=p In Cp we have the unit disc 

Op={ a G Cp :\a \p ^ 1 }.  

Proposition.  The subset Op c Cp is a subring of Cp.  
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The proof uses the ultrametric inequality and is essentially the same as 

that for Zp c Qp.  We end with yet another version of Hensel's Theorem,  

this time adapted to use in Cp.  

Theorem.  Hensel's Theorem: Cp version.  Let f XOp[X].  Suppose 

that Op and d>0 is a natural number satisfying the two conditions 1, , 1 

|f a|p<', f' a, p=pd.  

Setting ai=a— f a f' a-1,  we have 

|f ai|p ^ p2d+3.  

14.3 FIRST INTRODUCTION TO P-ADIC 

NUMBERS 

In all that follows,  p will stand for a prime number.  N,  Z,  Q,  R and C 

are the sets of respectively the natural numbers i. .  non negative 

integers,  integers,  rational numbers,  reals and complex numbers.  

In some— but not all— of what follows,  we assume the reader is 

familiar with the notions of "group",  "ring" and "field".  We assume 

throughout that the reader knows the basic facts about the b-adic 

representation i. .  representation in base of integers and reals 

Note: I did not aim here at writing a completely rigorous document,  

but only an easily understandable introduction for those who do not have 

any idea of what a p-adic is.  

First definition 

We will call p-adic digit a natural number between 0 and p— 1 

inclusive  A p-adic integer is by definition a sequence aiieN of p-adic 

digits.  We write this conventionally as 

.. .  a i  . . .  a2  a i  a0  

 that is,  the ai are written from left to right.  If n is a natural number,  

and 

n=ak-i ak-2 •• • ai ao  
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is its p-adic representation in other words n =- 0 aip
i
 with each ai a p 

– adic digit then we identify n with the p-adic integer ai with ai=0 if 

i>k.  This means that natural numbers are exactly the same thing as p-

adic integer only a finite number of whose digits are not 0. Also note 

that 0 is the p-adic integer all of whose digits are 0, and that 1 is the p-

adic integer all of whose digits are 0 except the right-most one digit 0 

which is 1. 

If a= aj and fl= bi are two p-adic integers,  we will now define 

their sum.  To that effect,  we define by induction a sequence cj of p-

adic digits and a squence + of elements of { 0, 1 } the "carries" as 

follows: 

 

• <=0 is 0. 

• cj is abi<=i or aibi<=i— p according as which of these two is a 

p-adic digit in other words,  is between 0 and p— 1. In the 

former case,  <=i+i=0 and in the latter, <=i+i=1. 

Under those circumstances,  we let afl= cj and we call afl the sum of 

a and fl.  Note that the rules described above are exactly the rules used 

for adding natural numbers in p-adic representation.  In particular,  if a 

and fl turn out to be natural numbers,  then their sum as a p-adic integer 

is no different from their sum as a natural number.  So 22=4 remains 

valid whatever p is— but if p=2 it would be written ... 010... 010=... 

100. 

Here is an example of a 7-adic addition: 

• • •  2 5 14 13 +  

• • •  1 2  

1 0  2  

~ 4 0 2 5 1 5 

This addition of p-adic integers is associative,  commutative,  and 

verifies a + 0=a for all a recall that 0 is the p-adic integer all of whose 

digits are 0. 
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Subtraction of p-adic integers is also performed in exactly the same way 

as that of natural numbers in p-adic form.  Since everybody reading this 

is assumed to have gone through first and second grade,  we will not 

elaborate further :-.  

Note that this subtraction scheme gives us the negative integers 

readily: for example,  subtract 1 from 0 in the 7-adics: 

 

• • •  0 0 0 0 0 0  

—  • • •  0 0 0 0 0 

1 

. . .  6 6 6 6 6 6 

 each column borrows a 1 from the next one on the left.  So — 1=... 

666 as 7-adics.  More generally,  — 1 is the p-adic all of whose digits 

are p— 1,  — 2 has all of its digits equal to p— 1 except the right-most 

which is p— 2, and so on.  In fact,  strictly negative integers 

correspond exactly to those p-adics all of whose digits except a finite 

number are equal to p— 1. 

It can then be verified that p-adic integers,  under addition,  form an 

abelian group.  We now proceed to describe multiplication.  First note 

that if n is a natural number and a a p-adic integer , then we have 

a naturally defined na=a. . .a  n times, with 0a=0 of course .  

If  n is negative, we let ,  of course,  na= —  -na.  This limited 

multiplication satisfies some obvious equalities,  such as 

mna=mana, n afl=nanfl, m na= mna, and so on for those 

with some background in algebra,  this is not new: any abelian group is a 

Z-module. Note also that multiplying by p=... 0010 is the same as 

adding a 0 on the right.  Multiplying two p-adic integers on the other 

hand requires some more work.   To do that,  we note that if a0,  ai,  a2,. ..  

are p-adic integers,  with ai ending in at least one zero,  a2 ending in at 

least two zeroes,  and so on,  then we can define the sum of all the a^,  

even though they are not finite in number.  Indeed,  the last digit of the 

sum is just the last digit of a0 since a1,  a2,. ..  all end in zero,  the 
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second-last is the second-last digit of a0a1 because a2, a3, ... all end in 

00, and so on: every digit of the infinite sum can be calculated with 

just a finite sum.   Now we suppose that we want to multiply a and fl= 

bi two p-adic integers.  We then let a0=b0a we know how to define this 

since b0 is just a natural number,  a1=pb1a, and so on: ai=p
i
bia. Since ai 

is a p-adic integer multiplied by p
i
,  it ends in i zeroes,  and therefore the 

sum of all the ai can be defined.  

This procedure can sound complicated,  but,  once again,  it is still 

exactly the same as we have all learned in grade school to multiply two 

natural numbers.  Here is an example of a 7-adic multiplication: 

5 3 3 1 2 6 

0 0 0 0 0  

1 4 1 3  

4 1 3  

26 

3 

3 1 0 4 2 6  

 of course,  it is relatively likely that I should have made some mistake 

somewhere.  We now have a set of p-adic integers,  which we will call 

Zp, with two binary operations on it,  addition and multiplication.  not do 

it— that Zp is then a commutative ring for those who don't know what 

that means,  it means that addition is associative and commutative,  that 

zero exists and satisfies the properties we wish it to satisfy,  that 

multiplication is associative and commutative,  and distributive over 

addition,  and that 1 exists and satisfies the properties we wish it to 

satisfy namely 1a=a for all a. 

Now,  how about division? First,  the bad news: division of p-adics is 

not performed in the same way as division of integers or reals.  In fact,  

it can't always be performed.  For example,  1/p has no meaning as a p-

adic integer— that is,  the equation pa =1 has no solution— since 

multiplying a p-adic integer by p always gives a p-adic integer ending in 



                                                                                            Notes 

189 

Notes Notes 
0. There is nothing really surprising here: 1/p can't be performed in the 

integers either.  

However,  what is mildly surprising is that division by p is 

essentially the only division which cannot be performed in the p-adic 

integers.  This statement in technical terms "Zp is a local ring" will not 

be made precise for the moment; however, we give a concrete example. 

Suppose p is odd in other words, p=2. And let a be the p-adic integer 

all of whose digits are equal to p— 1/2 except the last one which is 

p1/2. By performing 2a in other words,  aa,  it is clear that every 

digit will be zero except the last one which is 1. So 2a=1, in other words 

a=1/2. 

For example,  with our usual example of p=7 we show that the 

number a=... 333334 is the number "one half' by adding it to itself: 

• • •  3 3 3 3 3 4 + 

• • •  3 3 3 3 3 4 

• • •  0 0 0 0 0 1 

Thus,  in the 7-adic integers,  "one half' is an integer. And so are 

"one third"  ... 44445, "one quarter" ... 1515152, "one fifth" ... 

541254125413, "one sixth" ... 55556, "one eighth" ... 0606061, "one 

ninth" ... 3613613614, "one tenth" ... 462046205, "one eleventh" ... 

162355043116235504312 and so on.  But "one seventh",  "one 

fourtneenth" and so on,  are not 7-adic integers.  

We now give a way to calculate the inverse and therefore the 

quotient of p-adic integers.  Suppose a is a p-adic integer ending in zero 

such numbers are known small for reasons we will describe later.  

Then a
%

 ends in at least i zeros.  Therefore,  as we have observen,  we 

can calculate /3=1aa
5
••• even though it has an infinite number of 

terms.  Multiplying this by 1— a and expanding out we shall admit 
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that all the appropriate properties of addition are preserved when dealing 

with infinite sums we find that 1— a^=1— aa— a
2
a

2
  =1. 

Therefore we are able to calculate the inverse of 1— a, which can be,  as 

is easy 

Any p-adic integer ending in 1. To summarize: p-adic integers ending in 

0 have no inverse; those ending in 1 can be inverted with the formula 

described above.  To inverse a p-adic integer a ending in a digit d other 

than 0 and 1, we find the unique digit f such that df is congruent to 1 

mod p i .. is equal to 1 plus a multiple of p.  In that case,  fa ends in 

1 so can be inverted,  and we then have 1/a=f/ fa.  To find f for small 

values of p,  I have no better advice than checking successively all digits.  

Perhaps computer scientists can suggest an altogether faster method for 

inverting p-adics.  

Up to now we have only described p-adic integers,  and not p-adic 

numbers.  We now proceed to define the latter.  The relation between the 

set ring Zp of p-adic integers and the set field Qp of p-adic numbers is 

the same as between the set ring Z of integers and the set field Q of 

rationals.  Namely,  the second is obtained by taking quotients of an 

element of the first by a non zero element of the same— or,  which 

amounts to the same,  by adding new inverses to some elements of the 

first.  In the case of the rationals,  an inverse has to be added to every 

prime number p.  In our case,  however,  we are fortunate,  and adding 

an inverse to p only will suit our needs.  We therefore proceed to do that.  

We now define a p-adic number to be a Z-indexed sequence aiieZ of 

p-adic digits such that a=0 for sufficiently small i explicitly: there 

exists i0Z such that a=0 for i<i0.  Such numbers are also written from 

right to left,  with a "p-adic dot" after decimal 0. So our condition says: 

there are a finite number of non zero digits on the right of the p-adic 

point. We consider p-adic integers as p- adic numbers by identifying 

aiieN with aiieZ where a=0 for i<0, in other words by adding zeros to 

the right of the point.  If a= a^ is a p-adic number such that a=0 for i<i0 

and we can certainly suppose i0<0 so we do then the p-adic number a' 
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obtained by shifting every decimal of a by -io places to the left is a p-

adic integer.  We write a=a'p
i0

 or a=a'/p
-i0
.  

P-Adic numbers can then be added as follows: if a=a'p
1
 with a' a p-

adic intger, and P=P'p
7
 ditto, and suppose moreover 

i
<

j
<0, then we let a 

+ P= a'P'p
j-t
p

%
— note that a'P'p

j-i
 is indeed a p-adic integer.  This is 

just a complicated way of saying that we add as usual,  starting from the 

furthest  rightmost column where there is a non zero digit.  

Multiplication is easier: under the same notations except that the 

condition i<j is no longer necessary we let aP=a'P'p
i+j

.  This says that 

we multiply "as usual",  ignoring the p-adic dot,  and then we place the 

dot in the "obvious" place where it should be.  

The set Qp of p-adic numbers,  with this addition and multiplication,  

forms a field— in other words,  all the properties of a ring are satisfied,  

and moreover every nonzero element has a multiplicative inverse.  

Check your Progress-1 

Discuss P-Adic Algebraic Number Theory 

14.4 P-ADIC NUMBERS  

Absolute values 

The p-adic absolute value |-|p on Q is defined as follows: if aQ,  a=0 

then write a=pmb/c where b,  c are integers not divisible by p and put 

|a|p=p-m; further,  put |0|p=0.  

Example.  Let a= — 2-7385-3.  Then |a|2=27,  |a|3=3-8,  |a|5=53,  |a|p=1 

for p ^ 7.  

We give some properties: 

|ab|p=|a|p|b|p for a, bQ; 

|ab|p ^ max | a|p,  |b|p for a,  bQ ultrametric inequality.  Notice 

that the last property implies that 

|ab|p=max | a|p,  |b|p if |a|p=|b|p.  
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It is common to write the ordinary absolute value |a|=max a,  — a on Q 

as |a|ro,  to call ro the 'infinite prime' and to define Mq := U { primes }.  

Then we have the important product formula: 

^ \a\p=1 for a G Q,  a=0.  

Absolute values on fields.   

We define more generally absolute values on fields.  Let K be any field.  

An absolute value on K is a function \-\ : K ^ R^0 with the following 

properties: 

\ab\=|a|  \b\ for a, b G K; 

|ab\ ^ \a\\b\ for a,  b G K triangle inequality; \a\=0 a=0.  

Note that these properties imply that \1\=1.  The absolute value\ \is 

known non-trivial if there is a G K with \a\={ 0, 1 }.  

The absolute value\ \is known non-archimedean if the triangle inequality 

can be replaced by the stronger ultrametric inequality 

\ab\ ^ max \a \, \b\ for a,  b G K.  

An absolute value not satisfying the ultrametric inequality is known 

archimedean.  

If K is a field with absolute value\ \and L an extension of K,  then an 

extension or continuation of \-\ to L is an absolute value on L whose 

restriction to K is\  \.  

The ordinary absolute value\ \on Q is archimedean,  while the p-adic 

absolute values are all non-archimedean.  

Let K be any field,  and K t the field of rational functions of K.  For a 

polynomial f G K[t] define \f \=0 if f=0 and \f \=edeg f if f=0.  Further,  

for a rational function f/g with f, g G K[t] define \f/g\=\f \/\g \.  Verify 

that this defines a non-archimedean absolute value on K t.  
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Two absolute values\ \i, \ \2 on K are known equivalent if there is a>0 

such that \x\2=\x\a for all x G K.  We state without proof the following 

result: 

Theorem Ostrowski.  Every non-trivial absolute value on Q is 

equivalent to either the ordinary absolute value or a p-adic absolute value 

for some prime number p.  

Valuations.  In algebra and number theory,  one quite often deals with 

val-uations instead of absolute values.  A valuation on a field K is a 

function v : K ^ R U { to } such that for some constant c>1,  c-v • 

defines a non- archimedean absolute value on K.  That is,  

v x=to x=0; 

v xy=v xv y for x,  yK; 

v xy ^ min v x,  v y for x, yK.  

The valuation is known non-trivial if there is aK* with v a=0.  The 

set v K* is an additive subgroup of R.  The valuation v is known 

discrete if v K*is a discrete subgroup of R.  A normalized discrete 

valuation is one for which v K *=Z.  

14.5 VISUALIZATION Of P-ADIC 

NUMBERS 

Our visual perception,  whether due to high exposure from a young age 

or simply because of the biological properties of our brain I do not 

know,  is based on standard Euclidean geometry.  I doubt the physical 

universe is Euclidean in its geometry,  but it is very clear that humankind 

relies on Euclidean geometry to perceive the universe.  So strong is this 

reliance that even in the setting of p-adic topology,  which clearly is not 

Euclidean,  we have found a way to picture it using Euclidean geometry 

- as a matter of fact,  we even used a language borrowed from Euclidean 

geometry and topology,  such as balls and spheres,  to talk about p-adic 

topology.  However,  the landscape created by p-adic topology is 

completely different to our intuition,  thus,  for example,  as we have 
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already observen,  the notions of open and closed balls becomes 

meaningless.  

The goal of this section is to visualize the p-adic integers within our 

familiar framework of Euclidean geometry.  

It is interesting to note that the topology on Zp is inherently fractal,  

that is,  Zp is homeomorphic to the Cantor set and Qp is homeomorphic 

to a finite disjoint union of Cantor sets. Consider the open set C0 := 

[0, 1] and delete the middle third,  obtaining the compact set C\=[0,  |] 

U [ |, 1].  Iterating on this construction we get a decreasing sequence of 

nested compact subspaces of the unit interval Co, where each Cn consists 

of 2
n
 closed intervals of length 3

-n
.  

Definition. A topological space that is homeomorphic to a complete 

metric space with a countable dense subset is known a Polish space,  that 

is,  a Polish space is a separable,  completely metrizable topological 

space. .   

Remark. Note that Polish spaces are not neces sari ly metric 

spaces,  they admit many different complete metrics which 

then induce the same topology.  A polish space with an 

unique metric is known a Polish metric  space.  

Example R
n
,  C

n
,  [0,  1], Zf and Q'

n
 are Polish spaces.   

Definition / Remark Let CA  := Uiez  2i, 2i1 and for n N 

inductively define C n=Cn -1  fl  3
-n

CA ,  then the set  C := f |i=0  

C i ,   the so known Cantor
6
 set,   is  uncountably infinite and 

compact.   

Now consider the 3-adic expansion of a natural number x=Y °=0 xi3
i
,  

then the construction of Ci corresponds to removing those xC0 with 

x0=1,  the construction of C2 corresponds to removing those x with xi=1 

and so on.  In iteration we observe that the Cantor set C consists of 

elements that admit a 3-adic expansion of the form: ^°=i oi3
-i
,  with 

ai{ 0,  2 }.  This doubling of the binary representation leads to the 

following 
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Remark. The Cantor set is homeomorphic to the Cantor 

space  C, | | with the discrete topology.  The Cantor space 

is a perfect ,  totally dis  connected,  uncountably infinite ,   

compact Polish space.  The actual  homeo- morphism is 

given by the above construction using the ternary numeral 

system.  

Proposition.  The sets  Z2 ,  | |2  and C, | |  are homeomorphic .  

A homeomorphism is given by p : Z2  ^ C, Yi=0  xi2
i
 ^Yi=0  

2x i3
-   i+1 

  

The case of an odd prime number is analog to the even case,  we just 

need a more general 

Definition. Let p P be arbitrarily chosen,  CA=U iez[2i , 

2i1] and C
p
 := [0, 1]. We define,   by induction,  Cn := C

p
n - i  f 

2p—  1
-n

CA and t h e  p -C an to r  s e t  C
p
 i s  t h en  d e f i n ed  a s  

C
p
 := p|i0  C

p
.  

Remark For a fixed n N, the set Cn consists of 
n
 disjoint 

open sets of length each 2p—  1
-n

. The p-Cantor set is  

obtained by dividing thosedisjoint sets into 2p — 1 

subintervals of equal length and then deleting every second 

open interval .  

Proposition The p-Cantor set is  compact and uncountably 

infinity.   

If we once again consider the 2p — 1-adic expansion of a natural 

number x, then,  completely analog to the even case,  we observe that 

xC
n
 if and only if in its 2p— 1-adic expansion,  each xn is even,  

which leads to the following 

Remark. The Cantor sets C
p
 are homeomorphic to the Cantor  

spaces C
p
,  || with the discrete topology.   The Cantor spaces 

are perfect ,  totally disconnected,  uncountably infinite ,  

compact Polish spaces .   The ac- tual homeomorphisms are 

given by the above construction using the 2p— 1- ary numeral 

system.  
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Theorem. There is a homeomorphism between the metric 

spaces  Zp, | |p  and C, | |,  given by 

p : Zp ^ C
p
 

ro ro 

x=^Xip' ^ ^ 2xf 2p—  1
- i+1

.  

i=0 i=0 

Definition. A closed metric space X, d  is known perfect if 

it  has no isolated points ,  that is,  if  it  is equal to the set of 

its own limit points .   

Proposition.  Every uncountable Polish space contains a 

subset that  is  homeomorphic to C.  In particular,  every 

totally disconnected ,  perfect and compact metric space is 

homeomorphic to the Cantor set .   A complete topological 

characterization of Cantor spaces is  given by Brouwer
7
 in 

the following sense: any two compact Hausdorff spaces with 

countable open bases are homeomorphic .  

Summarizing the above discussion,  we obtain the following,  rather 

surprising 

The p-adic fields  Z2  and Z p  are homeomorphic  

14.6 CALCULATING WITH P-ADIC 

NUMBERS 

The addition in Qp is very straightforward: 

Proposition.  For x, yQ p ,  x=J2 = -m  x%p%,  y=J2i=-n 

y%P% and w. l.  o.  g.   m>n we have 

x ± y=Y x %  ± y%p\ 

%=-m 
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where y%=0, for al l i {  - m,  . .  . ,  —  n — 1 }. 

Example. Take x =1Q p ,  then y=Yf=o p— 1p
n
 solves 

x+y=0. 

Proposition.  For x= =-m x%p% and y=J2%=-n y%p% elements 

in Qp we define 

xy := Y 
Z
%P%, %=-m-n 

where 
z
 — m — n— 

x
-m

y
 — nj 

z
-m-n+l—  

x
-m

y
-n

x
-m

y
 — n+l 

an d  

z
-m-n — j  Y=o x -m+j-%y-n+% compare this with the well -

known Cauchy product for  sequences .   

Exercise Show that p Z p  has no multiplicative inverse in  

Z p .  

Exercise.  Write a=. . .  a 2 a 1 a 0 Z p ,  then show that a admits a  

multiplicative inverse in Zp if and only if a0=0. 

This is obviously completely different from the situation we are used 

to in Z, nevertheless Zp is still not a field.  

Remark PARI / GP
8
 by H.  Cohen

9
,   a computer algebra 

system with the main aim of facili tating number theory 

computations,   has an inbuild  support for p-adic numbers .  

One can create a p-adic number by simply typing: x=xO 

p
k
 ,   where k is the desired precision .  

Example. Consider x=6 7 0 193 86 5 Q1 3 ,  using PARI we observe 

that  |x| 1 3=13
-5

  yo9o8 13=13
5
, t h us  x Z1 3 ,  b u t  x =x   

13
5
=^0_ Z1 3 .  

Proposition A p-adic number x Q p  has a finite p-adic 

represent- a t i o n ,  i f  an d  on l y i f  x = pn,  fo r  z Z, n N an d  

p P. 

Proof. Write 
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n n z 

x=^ xip=p~
m

 ^ xip~
m+l

= —, zZ,   

i=-m i=-m
p  

as desired.   

Conversely,  if x=p
-m

y, yN, then we can write y in the basis p 

and m.  

get y=yip
1
,  as desired.    

Proposition.  Consider an arbitrary p -adic number x= G Q p ,  

i=-m 

then x G Q ,  if and only if there exist N, k G N such,  that  

xn+k=xn ,   for all  n>N,  that  is,   i f x becomes periodic .  

 

14.7 AN ALGEBRAIC CONSTRUCTION 

OF THE P-ADIC NUMBERS 

Definition A projective system is a sequence  Xn ,  pn  of sets 

and so known transit ion maps pn  :  Xn  7 Xn -1 .   The projective 

limit of this  sequence is a set X with maps 
r
fn  :  X 7 Xn  such,  

that  
r
fn=pn  o 

r
fn + l  and satisfying the following condition: for 

each set Y and maps fn  :  Y 7 Xn  with fn=pn  o fn + l ,   there is a 

unique factorization f of the f n  through the s e t  X ,  t h a t  i s  

f n =
r
f n  o f  :  Y  7 X  7 X n .  

Remark. A projective system can be represented by a 

diagram: 

p
n1 \r 

p
n V V 

P
°v v .. .   ---- 

7  X
n  * 

X
n-1  7 .. .  

X
i  

7 X
Q. 

Proposition For every projective system Xn ,  pn  there exists 

a u n i qu e  p r o j ec t i v e  l im i t  limXn := X ,  t f n   C f X n .  

Proof. To observe that a limit actually exists,  consider the set 

X := { Xn |Pn Xn+l=Xn Vn>0 } C JJ Xn. 

n=0 
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Then,  by definition,  for each xX we have pn nn+l x=nn x, where 

the nn : Xn 7 Xn are the canonical projection maps.  Thus the restrictions 

r
fn of those projections to X fulfill pn o 

r
fn+l=

r
fn and it is clear that  X, 

tfn is an upper bound for the given sequence.  

Now we still have to prove that X, tfn has the required universal 

prop-erty.  To observe this,  consider another tuple X,ifn satisfying the 

desired condition.  We have to show that there is a unique factorization 

of 
r
fn b ifn, alas by the universal property of the product of sets and the 

projection maps,  we know that there exists a unique map g : X 7  flf=0 

Xn such,  that the following diagram 

n Xn n=0 
n
n 

Chosing g= ^'n finishes the proof,  as then im g C X and we can define 

the factoring function f,  as in the definition,  by restricting the codomain 

of g, that is,  f : X ^ X,  x ^ g x.  

The uniqueness follows again from the universal property.   

Note that a projective limit neet not to be of the same kind as the sets  

or groups,  or rings or spaces of the projective sequence.  For example,  

in general,  the projective limit of a sequence of fields is usually only a 

ring.  Another example is that the projective limit of finite abelian 

groups need not to be finite.  However in certain situations we can still 

save a lot of information from our spaces.  

Proposition.  For a projective system Xn ,  pn  of topological 

spaces and continuous maps,   the projective limit is closed 

in nio Xn ,   i f the Xn  are Hausdorff spaces .  

Proof. This follows immediately from the Hausdorff property,  i. .  we 

can find disjoint open neighbourhoods of Xi and p xi+1, thus it is easy 

to observe that ni=0 Xi\X is open.    

Now we return to the actual matter at hand,  the construction of p- 

adic numbers.  There is a natural,  or canonical,  surjective 

homomorphism En : 
Z
/pnZ  ^ 

Z
/pn-iZ with ker <p=p

n-1
Z and the 

sequence 
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- 
Z
/p-z 

Z
/p-iz •• • 

Z
/p2Z 

Z
/pZ, forms a projective system.  

Definition. The ring of p-adic integers Z p  is defined as the 

projective limit of the above system.  

Thus by definition,  an element of Zp=\jm 
Z
/pnz, pn is a sequence 

a= . . . ,an, .. ., a1,  with: 

an 
Z
/pnz and En an=an-1 if n>2.  

The 
Z
/pnz, with the discrete topology,  are compact topological spaces,  

thus by Tikhonov
10

,  their cartesian product is compact as well in the 

product topology,  for a proof of Tikhonov's theorem.  Thus,  as a 

closed subspace of a compact space,  Zp is a totally disconnected 

compact space.   

In English: Zp is closer to Z/nz than it is to Z/n+iz. Since Zp is an integral 

domain the following definition makes sense.  

Definition. The field of p-adic numbers Qp  is the field of 

fractions o f  Zp. 

Proposition.  Qp  is  isomorphic to Qp  

Proof. This immediately follows from the universal property of the field 

of fractions of an integral domain.   

Proposition.  The following sequence is exact:  

0  y Z
p —>

Z
p —>

Z/
p

n
Z 

y 0
 

ZZ With other word s , Z/nZ is 

isomorphic t o Z/nZ. 

Proposition.  An element a G Z p  lies in u p  if and only if p \a.  

Fu r th e rm o re ,  e ach  e l em en t  a  G Z p  c an  b e  wr i t t en  as  

a = < = p
n
,  w i t h  G u p .  

                                                      

 



                                                                                            Notes 

201 

Notes Notes 
14.8 QUADRATIC RESIDUES IN P-ADIC 

NUMBERS 

An element a=Yli=0 a ip
i
Z  is a square,  if and only if  a0  is  

a quadratic residue modulo p .  

Proof. If y=1,  then,  by Hensel's first Theorem,  we know that X
2
— a 

has a zero in Z*. Conversely,  if a0 is a quadratic residue modulo p,  then 

there exists no b =bip
i
 with b

2
 =p  a0.  

With this ideas,  we can classify the squares in Qp: 

Theorem. For an arbitrary prime p=2, we have 

a Q p  is a square a=p
2 n

 • < =
2
,   

where n Z and <= Zp. The quotient group 
q
p/q* 2  has 

order 4 and,  if  we 

fix an u u p =Zp with= — 1, then the set  { 1,  p ,  u ,  up  }  i s  a  

co mpl e t e  system of representatives .  

Proof. We have to consider the polynomial f x=x
2
—  a. For bQp 

with f b=0 it holds that ordp b
2
=2 • ordp b=ordp a.  We know that b 

can be written as b=p
ordp b

 •  <=, <=Zp, thus a=b
2
=p

2ordp b
 • <=

2
.  

Now if conversely we have a=p
2n

 •  <=
2
, then b=p

n
 • .  

The quadratic residues modulo p form a subgroup of ^/pZ  

Theorem. An element a Z2 is a square in Z 2 ,   if and only 

if a =8  1. The factor group 
q
/q*2 has order  8 and a complete 

system of representatives is given by { ±1, ±5, ±2, ±10 }. 

Proposition.  An element x Q is a square,  if and only if    it  

is a square in Qp for all pP U { ^ }.  

Proof. Arbitrarily chose x=± ]lp eP p
ordp x

, x=0,  then x is a square in 

Q^=R if and only if x>0 and it is a square in Qp if and only if it can be 

written as x=p
2n

  with nZ and <=up, thus vp x2Z for all 

pP, which means that  x is a square in Q . 
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14.9 ROOTS OF UNITY 

Definition. Let K be a field.   An element Z K is known a 

n-th root  of unity,   for n N, if Z
n
=1. If additionally Z

m
=1,  

for m N with 0<m<n,  then Z is known a primitive n-th 

root of unity.   

Now if ZQp with Z
n
=1 for an nN, then |Z |p=1,  which means 

that all p-adic roots of unity are elements of up. Once again Hensel's 

Theorems give a complete answer to the question when p-adic roots of 

unity actually exist and what they look like.  

Theorem. Let p P be arbitrari ly chosen and n N such,  

that  gcd p, n=1,  then there exists a n -th p-adic root of unity 

in Qp, if and only if n | p— 1. If  a n-th root of unity exists ,  

it  is automatically a   p— 1-th root of unity as well and the 

set of all  p— 1-th roots of unity is a subgroup of up with index 

p— 1. 
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14.10 LET US SUM UP 

In this unit we have discussed the definition and example of P-Adic 

Algebraic Number Theory, First Introduction To P-Adic Numbers, P-

Adic Numbers, Visualization Of P-Adic Numbers, Calculating With P-

Adic Numbers, An Algebraic Construction Of The P-Adic Numbers, 

Quadratic Residues In P-Adic Numbers, Roots Of Unity 
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14.11 KEYWORDS 

P-Adic Algebraic Number Theory…. In this section we will discuss a 

complete normed field Cp, which contains Qp as a subfield and has the 

property 

First Introduction To P-Adic Numbers…. In all that follows,  p will stand 

for a prime number.  N,  Z,  Q,  R and C are the sets of respectively the 

natural numbers i. .  non negative integers,  integers,  rational 

numbers,  reals and complex numbers.  

P-Adic Numbers…. The p-adic absolute value |-|p on Q is defined as 

follows: if aQ,  a=0 then write a=pmb/c 

Visualization Of P-Adic Numbers… Our visual perception,  whether due 

to high exposure from a young age or simply because of the biological 

properties of our brain I do not know,  is based on standard Euclidean 

geometry .Calculating With P-Adic Numbers…. The addition in Qp is 

very straightforward:An Algebraic Construction Of The P-Adic 

Numbers…. A projective system is a sequence  Xn ,  pn  of sets 

and so known ransition maps p n  :  Xn  7 Xn - 1Quadratic Residues 

In P-Adic Numbers ….. An element a=Yli=0 a ip
i
Z  is a square,   

if and only if  a0  is  a quadratic residue modulo p .Roots Of 

Unity…. Let K be a field .  An element Z K is known a n-th 

root  of unity 
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